Optimization of Effective Doping Concentration of Emitter for Ideal c-Si Solar Cell Device with PC1D Simulation

Maruthamuthu, S (2022) Optimization of Effective Doping Concentration of Emitter for Ideal c-Si Solar Cell Device with PC1D Simulation. Crystals, 12 (2). p. 244. ISSN 2073-4352

[thumbnail of Optimization of Effective Doping Concentration of Emitter for Ideal c-Si Solar Cell Device with PC1D Simulation.pdf] Text
Optimization of Effective Doping Concentration of Emitter for Ideal c-Si Solar Cell Device with PC1D Simulation.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (2MB)

Abstract

Increasing silicon solar cell efficiency plays a vital role in improving the dominant market share of photo-voltaic systems in the renewable energy sector. The performance of the solar cells can be evaluated by making a profound analysis on various effective parameters, such as the sheet resistance, doping concentration, thickness of the solar cell, arbitrary dopant profile, etc., using software simulation tools, such as PC1D. In this paper, we present the observations obtained from the evaluation carried out on the impact of sheet resistance on the solar cell’s parameters using PC1D software. After which, the EDNA2 simulation tool was used to analyse the emitter saturation current density for the chosen arbitrary dopant profile. Results indicated that the diffusion profile with low surface concentration and shallow junction depth can improve the blue response at the frontal side of the solar cell. The emitter saturation current density decreases from 66.52 to 36.82 fA/cm2 for the subsequent increase in sheet resistance. The blue response also increased from 89.6% to 97.5% with rise in sheet resistance. In addition, the short circuit density and open circuit voltage was also observed to be improved by 0.6 mA/cm2 and 3 mV for the sheet resistance value of 130 Ω/sq, which resulted in achieving the highest efficiency of 20.6%.

Item Type: Article
Uncontrolled Keywords: Crystalline silicon; Doping concentration; EDNA2; PC1D; Solar cells
Subjects: D Electrical and Electronics Engineering > Solar Energy
Divisions: Physics
Depositing User: Users 5 not found.
Date Deposited: 17 May 2024 07:53
Last Modified: 17 May 2024 07:53
URI: https://ir.psgitech.ac.in/id/eprint/608

Actions (login required)

View Item
View Item