Effect of neodymium (Nd) doping on the photocatalytic organic dye degradation performance of sol-gel synthesized CoFe₂O₄ self-assembled microstructures

S. Hemasankari,^a S. Priyadharshini,^b D. Thangaraju,^{b*} V. Sathiyanarayanamoorthi^{a*}, Njod Mansour Hasan Alsdran^c, Mohd. Shkir^{*c,d}

^aDepartment of Physics, PSG College of Arts and Science, Coimbatore-641014, Tamil Nadu, India

^bnano-crystal Design and Application Lab (n-DAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu, India.

^cDepartment of Physics, Faculty of Science, King Khalid University, Abha 61413, Saudi

Arabia.

^dDepartment of Chemistry and University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India.

Corresponding author

dthangaraju@gmail.com(Thangaraju Dheivasigamani)

(sathyanarayanamoorthy@yahoo.co.in) V. Sathyanarayanamoorthi

Submitting author*

shkirphysics@gmail.com

Abstract

Trivalent Neodymium doped CoFe₂O₄ was investigated as the potent photocatalyst for wastewater treatment. The CoFe₂O₄ and Nd-doped CoFe₂O₄ with various concentrations, such as 5, 10, and 15%, were prepared to employ the sol-gel technique. Structural characterization of the synthesized materials was done by powder X-ray Diffraction and Raman studies. The optical UV-Visible spectroscopy provides the optical properties of CoFe₂O₄ and Nd-doped CoFe₂O₄ and the XPS spectra, which identify the constituting elements with their oxidation states, confirm the incorporation of Nd into the CoFe₂O₄ lattice. SEM was performed to investigate their surface morphology, showing the self-assembled microstructures of CoFe₂O₄. The dye degradation process was investigated for the synthesized samples with methylene blue dye using UV-Visible spectroscopy, which reveals the photocatalytic performance of pure CoFe₂O₄ and Nd doped CoFe₂O₄ by measuring the absorbance of methylene blue at the same interval of time. The 5% Nd doped CoFe₂O₄ exhibits enhanced photocatalytic activity with a degradation efficiency of 72% within 4 hours, which is higher than the pure sample.

Keywords: Neodymium doped CoFe₂O₄ nanoparticles; ferriets; optical properties; dye degradation; photocatalyst

1. Introduction

The demand for pure water for a sustainable life is increasing daily. On the other hand, releasing pollutants into the water system from various sources has become inevitable. In particular, the discharge of several dyes from textile industries contaminates water bodies[1–5]. Though the effluents in wastewater can be removed by physical methods like adsorption method, membrane filtration, ion exchange, and coagulation method, their usage is restricted as they are time-consuming methods, require special filtration techniques, and also do not degrade the dye to the fullest [6,7]. The biological treatments also failed to remove these carcinogenic dyes as they have more complex structures [8]. Hence, the researchers are looking for an environmentally friendly method to remove these dyes. This paves the way for developing a new method that uses solar energy as a light source to degrade toxic dyes, called the photocatalytic dye degradation process.

Semiconductor nanoparticles as photocatalysts are more cost-effective, technologically viable, and environmentally friendly materials [9]. The most commonly used photocatalysts, such as TiO₂, MoS₂, CdS, and SiO₂ are not adapted to the fullest as they have poor charge carrier separation, photo corrosion and stability, and a band gap in the UV region [10,11]. Thus, the improved chemical and physical durability and greater catalytic activity of metal oxides help overcome the challenges of applying pure metal nanoparticles. The nanomaterials with magnetic properties can be employed as catalysts under ambient conditions as these properties will help in improving their reutilization potential, thereby reducing the cost of the process [12.13]. Spinel ferrites that are nanosized have recently attracted attention in the field of materials science because of their numerous technological uses as well as their potential for understanding the principles of nanomagnetism [14,15]. Spinel ferrites have the formula [MnFe_{1-n}][M_{1-n}Fe_{1+n}]O₄ where n denotes the distribution of cations, M is a divalent metal cation [M = Cu²⁺, Co²⁺, Ni2+, and Sn²⁺] and Fe is a trivalent metal cation [16-18]. Among many

ferrites, the cobalt ferrite has attracted more because of the combination of semiconducting and magnetic properties such as high coercivity [19], high positive anisotropy [20], high saturation magnetization [21], and chemical stability [22]. The $CoFe_2O_4$ is low bang gap semiconductor about 1.08ev and is highly stable to act as a photocatalyst [23]. As it has both photocatalytic and ferromagnetic properties, it can be used for oxidation and reduction reactions in UV and visible light [24]. Also, CoFe₂O₄ is significant in the thermal decomposition of O-O bonds and in the elimination of oxides [25]. Despite its advantages, the recombination rate of $CoFe_2O_4$ is the major issue in attaining its highest efficiency. However, this can be overcome by the doping of metal ions. In particular, adding rare earth elements to pure semiconductors improve photocatalytic efficiency by allowing functional groups to form complexes via interactions of f orbital rare earth metals [26]. The earlier investigations revealed that the doping of Nd³⁺ on TiO₂ increases the carrier lifetime facilitates charge movement, and functions as a direct trapping spot [27]. In addition, it is seen that rare earth doping such as Eu^{3+} and Nd^{3+} in semiconductor photocatalyst makes it activated in the visible region by increasing its optical adsorption and generating a high number of electron-hole pairs, thereby enhancing their photocatalytic performance [28]. Among many methods that have been employed to synthesize CoFe₂O₄, such as hydrothermal [29], microemulsion method [30], and co-precipitation [31], the gel matrix method was adopted to fabricate uniform self-assembly [32,33].

Herein, the preparation of pure and Nd-doped CoFe₂O₄ by the gel matrix technique was reported. XRD, Raman, and SEM were used to study the structure and morphology of the synthesized particles. The optical properties were examined by UV-Visible spectra, and the elemental identification with their oxidation state was done by XPS analysis. The photocatalytic activity of CoFe₂O₄ and Nd-doped CoFe₂O₄ was studied by performing a dye degradation process.

2. Experimental Methods

2.1 Materials

Ferric nitrate nanohydrate (Fe(No₃)₃.9H₂O, Loba), Cobalt (II) nitrate hexahydrate (Co (No₃)₂.6H₂O, Merck), Neodymium nitrate hexahydrate (Nd (No₃)₃.6H₂O), Citric acid monohydrate (C₆H₈O₇.H₂O, Sisco), Ethylene glycol (C₂H₆O₂, Hi Media) were used without being purified in any way.

2.2 Synthesis of CoFe₂O₄ and Nd doped CoFe₂O₄ nanoparticles

The gel matrix method was employed to synthesize the CoFe₂O₄ nanoparticles and Nddoped CoFe₂O₄ nanoparticles with various concentrations of Neodymium nitrate. In particular, 1 milli mole of Co (No₃)₂.6H₂O and 1 milli mole of Fe (No₃)₃.9H₂O were dissolved in two separate beakers containing 25 mL of deionized water. These solutions were stirred thoroughly until they were completely dissolved in water. Then the above two solutions were mixed, adding 2 milli moles of citric acid monohydrate (C₆H₈O₇.H₂O), forming a citrate complex. After stirring for about 20 min, the inducing agent, ethylene glycol, was added to polymerize the separated citrate complex [34]. As prepared, gel flakes were heated at 250 °C, and samples were annealed at 650 °C for an hour. The same method was used to synthesize Neodymium doped CoFe₂O₄ with various percentages of neodymium concentration, such as 5, 10, and 15%. The 5% of Nd(NOo)₃.6H₂O is added to Co (NO₃)₂.6H₂O and dissolved in 25 mL of deionized water. This is followed by the mixing with Fe (NO₃)₃.9H₂O that has been dissolved in 25 mL of dissolved water separately. Then the citric acid is added, and the above procedure is adopted, resulting in the formation of black-colored Nd doped CoFe₂O₄ nanoparticles. The 10 and 15 % of Nd doped CoFe2O4 nanoparticles were synthesized by performing the same.

2.3 Characterisation techniques

PANalytical X-ray Diffraction (XRD) with CuK α radiation of $\lambda = 1.5405$ Å was used to investigate the crystallinity of synthesized CoFe₂O₄ nanoparticles and Nd doped CoFe₂O₄ nanoparticles. A Jobin Yuvon HR 800 Raman spectrometer with a 532nm laser source was used for Raman spectral analysis. The optical absorption of syntheised samples was studied with a Thermofisher UV–visible spectrophotometer. X-ray photoelectron spectroscopy (XPS), performed through Thermo Scientific K-Alpha Surface Analysis and was used to identify constituents of synthesized nanoparticles. Scanning Electron Microscopy (SEM) ZEISS EVO 18 was used to examine the changes in surface structure caused by the addition of dopants. The UV-Visible absorbance was measured using a Shimazu UV/Visible 1380 UV/Vis-NIR spectrophotometer to record methylene blue degradation.

2.4 Photocatalytic performance

Methylene blue dye degradation under white light (100 W mercury lamp) was used to assess the photocatalytic activity. In an aqueous solution of MB (50 mL), 50 mg of $CoFe_2O_4$ was completely dissolved. Dark stirring was performed to balance the absorption–desorption process of the as-prepared dye before light illumination. Under irradiation, the samples were collected at a regular time interval of one hour and centrifuged to remove the residue of particles from the solution. The efficiency of degradation of the photocatalyst was calculated as follows [35]:

Degradation efficiency =
$$\frac{A_0 - A_t}{A_0} \times 100\%$$

where A_0 - absorbance at the time being zero and A_t - absorbance at a particular time. Due to the magnetic properties of pure and Nd-doped CoFe₂O₄, nano self-assembly may be readily removed from the treated solution using a magnetic separation approach, leaving no secondary pollution during the degradation process. As an outcome, CoFe₂O₄ and Nd-doped CoFe₂O₄ nanoparticles are beneficial materials in photocatalytic dye degradation. The kinetic behavior of degradation of methylene blue process is investigated using a pseudo-first-order equation [36], which is given as follows:

$$ln\left(\frac{C_0}{C}\right) = kt$$

Where C_0 - initial concentration of dye (mg L⁻¹), C - concentration of dye at a particular time t (mg L⁻¹), k - rate constant (hour⁻¹), and t - irradiated time (hour).

3. RESULT AND DISCUSSION

3.1 Structural studies

XRD patterns of synthesized CoFe₂O₄ and Nd-doped CoFe₂O₄ nanoparticles with 5, 10, and 15% of Nd are depicted in Figure 1. The observed pattern was well matched with standard CoFe₂O₄ (JCPDS card No.-010746403). The structure of CoFe₂O₄ seems to be cubic with a space group of Fd-3m. Lattice constants of CoFe₂O₄ were found to be a = b = c = 8.3860[37]. The reflections at 2 θ values of 30.1°, 35.4°, 43.1°, 57.0°, and 62.6° in the (220), (311), (400), (511), and (440) planes, respectively, indicates better growth of crystal structure. The doping of Nd into pure CoFe₂O₄ broadens the peaks of CoFe₂O₄, indicating that the crystallite size of CoFe₂O₄ is reduced. The broadening of peaks signifies the nanoscale features of CoFe₂O₄.

3.2 Raman Analysis

Figure 2 depicts the obtained Raman spectra of pure $CoFe_2O_4$ and Nd-doped $CoFe_2O_4$ with various percentages of Nd, such as 5, 10, and 15%. The inverse spinel structure of $CoFe_2O_4$ nanoparticles with cubic O_h^7 symmetry [38]. According to group theory, $A_{1g}+E_g+3T_{2g}$ are the five modes that are active Raman states for $CoFe_2O_4$ [39]. The vibrations of Fe^{3+} at the octahedral site correspond to a peak at 470 cm⁻¹, whereas the vibrations of Co^{2+} at the tetrahedral site correspond to a peak at 670 cm⁻¹. In a tetrahedral vacancy in FeO₄, the A_{1g} mode represents the symmetric stretching of an oxygen atom with respect to a metal ion. Eg and T2g modes are produced by the symmetric and anti-symmetric bending of the O atom in the Fe-O or Co-O link at the octahedral and tetrahedral voids [40]. An additional peak at 620 cm⁻¹ with A1g symmetry occurs because the octahedral and tetrahedral locations exchange cations [41]. Adding Nd to CoFe₂O₄ results in red shifting; the peak at 690 cm⁻¹ shifted towards a lower wavenumber. Similar wavenumber shifting patterns have previously been reported for rare earth element doping [42]. Also, the doping of Nd to pure CoFe₂O₄ causes a redistribution of Fe³⁺ ions and Co²⁺ ions. Thus, Fe³⁺ moves to tetrahedral sites, and Co²⁺ moves to octahedral sites, resulting in an increased inversion degree of spinel ferrites.

3.3 Optical properties

Absorption characteristics of CoFe₂O₄ and Nd-doped CoFe₂O₄ were examined using UV-visible spectroscopy. Figures 3a and 3b show the UV-visible absorption and reflectance spectra of synthesized pure and Nd doped CoFe₂O₄ recorded in the 200-400 nm range, respectively. The Fe -O charge transfer of an isolated Fe³⁺ ion in octahedral coordination is responsible for the band at 232 nm [43]. Comparing CoFe₂O₄ nanoparticles to 5% Nd doped CoFe₂O₄, it is clear that the absorption edge gradually moves toward the higher wavelength. This is due to intrinsic bandgap absorption. An electronic transfer between the valence and conduction bands causes these peaks. The exchange interaction between the s-f and d-f orbits causes a negative and positive adjustment to the edges of the conduction and valence bands, resulting in a reduction in the band gap.

3.4 XPS

Chemical stoichiometry of as-synthesized pure and Nd-doped CoFe₂O₄ was determined using XPS. Recorded XPS spectra corresponding to Co 2p, Fe 2p, O 1s, and Nd 3d core levels of synthesized samples are presented in Figure 4. The peaks that emerged at 779 and 794 eV correspond to Co $2p_{3/2}$ and $2p_{1/2}$, respectively, confirming the presence of Co²⁺ state [44], as shown in Figure 4a. Figure 4b gives the Fe 2p spectra, and the peak positions around 708 and 723 eV correspond to Fe $2p_{3/2}$ and Fe $2p_{1/2}$ for Fe³⁺ states, revealing the oxidation state of iron is Fe³⁺ and not Fe²⁺ [45]. Binding energy obtained at 531.7 eV for oxygen species (O 1s) agrees with the standard and is presented in Figure 4c [46]. XPS spectrum of Nd 3d is shown in Figure 4d. It is observed that doping of Nd to CoFe₂O₄ results in the shifting of peaks to higher values in Co 2p, Fe 2p, and O 1s spectra. The Nd 3d core level photoemission peaks at 982 and 1004 eV correlate to the 5/2 and 3/2 spin-orbit double components, respectively, showing that Nd ions exist in a trivalent state. Thus, the XPS results confirm the successful incorporation of Nd atoms into the CoFe₂O₄ lattice [47].

3.5 Surface Morphology

The SEM image of as-synthesized pure CoFe₂O₄ and Nd doped with various concentrations of Nd, such as 5, 10, and 15%, is shown in Figure 5. The CoFe₂O₄ shows the self-assembled microstructure. The synthesized nanoparticles appeared to be brick in which the top and bottom surfaces were flat while the porous were developed along their sides. The particles seemed to be large and irregular agglomerates with veins in them. Large cracks appeared along its side, with porosity here and there. The veins are arranged in a random manner with some cuts in them. In some regions of the surface, wrinkles and some porous cracks appear. Adding dopant to pure CoFe₂O₄ seems to increase the porous formation and develop patches on the top and bottom of the surface. Also, the doping of Nd results in the formation of macroporous parallel to each other in which the microporous are grown inside the wall of them. Also, the wrinkles on the surface seemed to be enlarged after doping Nd. Increasing the amount of Nd doping increases the wrinkles throughout the surface. The patches developed on the wrinkled surface exhibit a porous structure. Further magnification reveals the presence of a vein-like structure inside the porous.

3.4 Photocatalytic performance

To investigate the photocatalytic performance of CoFe₂O₄ and Nd-doped CoFe₂O₄, Methylene Blue dye was degraded with the synthesized photocatalyst. Figure 6 depicts the absorbance of MB dye in the presence of CoFe₂O₄ and various percentages of Nd-doped CoFe₂O₄ photocatalysts. The decrease in absorbance at 664 nm, the characteristic absorbance peak of methylene blue dye, specifies that the MB dye degrades faster in the presence of a catalyst. Under light irradiation, the electrons get shifted from the valence band to the conduction band, leaving their associated holes in the valence band. These valence band holes produce 'OH radical by reacting with OH⁻, which is present in the water. The photoinduced electrons are captured by O₂, resulting in the formation of superoxide anion 'O₂⁻. The generated 'OH and 'O₂⁻ is responsible for the oxidation process in the degradation of methylene blue dye. The shifted electrons shortly recombine with the holes in the valence band in CoFe₂O₄. To reduce such faster recombination, doping of rare earth metal ions, particularly Nd³⁺, was done. The doping of Nd³⁺ significantly alters the band structure of CoFe₂O₄ and Nddoped CoFe₂O₄ as photocatalysts is as follows:

$$Co Fe_2 O_4 + hv \to Co Fe_2 O_4 (e^- + h^+)$$
(3)

$$H_2 O + Co F e_2 O_4 (h^+) \to Co F e_2 O_4 + OH + H^+$$
(4)

$$Nd^{3+} + O_2 \to Nd^{4+} + O_2^{-}$$
 (5)

$$Co Fe_2 O_4 (e^-) + Nd^{4+} \to Co Fe_2 O_4 + Nd^{3+}$$
 (6)

$$HO_2 + HO_2 \to H_2O_2 + O_2 \tag{8}$$

$$H_2 O_2 + O_2^- \to OH + OH^- + O_2$$
 (9)

$$MB + OH/O_2 / H_2O_2 \to \text{ degraded products}$$
(10)

The degrading efficiency of $CoFe_2O_4$ and various percentages of Nd-doped $CoFe_2O_4$ photocatalysts is evaluated using equation (1) [48], as shown in Figure 7. It is seen that $CoFe_2O_4$ degrades MB solution by about 67% within 4 hours. To enhance the degrading efficiency of $CoFe_2O_4$, the doping of various percentage rare earth metal ions was carried out. Within the same time period, the degradation efficiency of 5% Nd doped $CoFe_2O_4$ is 72% higher than that of $CoFe_2O_4$. On the other hand, the increase in the percentage of Nd doping in $CoFe_2O_4$ decreases the degradation efficiency, such as 69% and 61% for 10% and 15% Nd doped $CoFe_2O_4$, respectively, for a reaction time of 4 hours. This reveals that raising the concentration of Nd doping favors the interaction between Nd trivalent metal ions (Nd³⁺⁾ and CoFe₂O₄, resulting in the shattering of the $CoFe_2O_4$ sites. This site splitting results in less electron-hole separation and a slower oxidation process, thereby diminishing the photocatalytic performance. Thus, the dye degradation efficiency appears to be enhanced only by doping low concentrations of Nd³⁺. The comparison of the photocatalytic activity of CoFe₂O₄ and various percentages of Nd-doped CoFe₂O₄ with previous works is tabulated in table 1.

Figure 8 shows the kinetic behavior of the deterioration process of MB dye with the synthesized photocatalyst. A straight line was obtained. The R^2 value and the rate of degradation constant were tabulated in table 2. The 5% Nd-doped CoFe₂O₄ degrades the dye at a higher rate of 0.3243 hour⁻¹. Thus, the doping of Nd to CoFe₂O₄ boosts the MB dye degradation process, which agrees with the resultant efficiency. Due to their ease of separation and lack of secondary contamination during the reaction, the synthesized nanoparticles, such as CoFe₂O₄ and Nd-doped CoFe₂O₄ may be used in several repeating processes.

4. Conclusion

The CoFe₂O₄ and Nd doped CoFe₂O₄ with various percentages of doping, such as 5, 10, and 15%, were effectively synthesized using the sol-gel process. XRD studies confirm the

cubic structure of $CoFe_2O_4$. The Raman investigation was used to determine the photocatalyst's numerous vibrational modes and phase impurities. XPS spectra confirmed the Nd incorporation in the $CoFe_2O_4$ lattice as Nd³⁺. SEM images depict flat surfaces of $CoFe_2O_4$ on top and bottom, with porous structures forming along its sides. Degradation of Methylene Blue dye with synthesized photocatalysts such as $CoFe_2O_4$ and Nd-doped $CoFe_2O_4$ revealed that doping Nd to $CoFe_2O_4$ increases photocatalytic activity. The 5% Nd doped $CoFe_2O_4$ shows higher photocatalytic performance, with a degradation efficiency of about 72% within 4 hours.

Conflict of interests statement

There is no conflict of interests from authors of this manuscript.

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Acknowledgement

The authors extend their appreciation to the Research Center for Advanced Materials Science (RCAMS), King Khalid University, Saudi Arabia, for funding this work under grant number RCAMS/KKU/020-22.

Credit Author Statement

S. Hemasankari, S. Priyadharshini, D. Thangaraju, V. Sathiyanarayanamoorthi, Njod Mansour Hasan Alsdran, Mohd. Shkir: Conceptualization, Methodology, Investigation, Writing – Original Draft, Writing – Review & Editing.: Writing – Review & Editing, Review and Validation and Funding acquisition.

References

- [1] A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool, Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution, J. Ind. Eng. Chem. 97 (2021) 111–128.
- [2] A.S. Kshirsagar, P.K. Khanna, Titanium dioxide (TiO₂)-decorated silver indium

diselenide (AgInSe2): Novel nano-photocatalyst for oxidative dye degradation, Inorg. Chem. Front. 5 (2018) 2242–2256.

- [3] D.C. and Y.C. and N.Z. and P.C. and Y.W. and K.L. and S.H. and P.C. and P.P. and R.Z. and L.W. and H.L. and Y.L. and R. Ruan, Photocatalytic degradation of organic pollutants using TiO₂-based photocatalysts: a review, J. Clean. Prod. 268 (2020) 121725.
- [4] A.P. Naik, A. V. Salkar, M.S. Majik, P.P. Morajkar, Enhanced photocatalytic degradation of Amaranth dye on mesoporous anatase TiO₂: Evidence of C-N, NN bond cleavage and identification of new intermediates, Photochem. Photobiol. Sci. 16 (2017) 1126–1138.
- [5] M. Aqeel, M. Rashid, M. Ikram, A. Haider, S. Naz, J. Haider, A. Ul-Hamid, A. Shahzadi, Photocatalytic, dye degradation, and bactericidal behavior of Cu-doped ZnO nanorods and their molecular docking analysis, Dalt. Trans. 49 (2020) 8314–8330.
- T. Thilagavathi, D. Venugopal, R. Marnadu, J. Chandrasekaran, D. Thangaraju, B.
 Palanivel, M.S. Hamdy, M. Shkir, H.E. Ali, WO₃/CoWO₄ nanocomposite synthesis using a facile co-precipitation method for enhanced photocatalytic applications, J.
 Phys. Chem. Solids. 154 (2021) 110066.
- [7] Y.M. Hunge, A.A. Yadav, V.L. Mathe, Ultrasound assisted synthesis of WO₃-ZnO nanocomposites for brilliant blue dye degradation, Ultrason. Sonochem. 45 (2018) 116–122.
- [8] S. Guo, G. Zhang, J. Wang, Photo-Fenton degradation of rhodamine B using Fe₂O₃-Kaolin as heterogeneous catalyst: Characterization, process optimization and mechanism, J. Colloid Interface Sci. 433 (2014) 1–8.

- [9] Q. Sun, K. Li, S. Wu, B. Han, L. Sui, L. Dong, Remarkable improvement of TiO₂ for dye photocatalytic degradation by a facile post-treatment, New J. Chem. 44 (2020) 1942–1952.
- G.S. Selvam, T. Dheivasigamani, A. Prabhu, N.K. Mani, Embellishing 2-D MoS₂
 Nanosheets on Lotus Thread Devices for Enhanced Hydrophobicity and Antimicrobial Activity, ACS Omega. 7 (2022) 24606–24613.
- [11] E. Pakdel, W.A. Daoud, S. Seyedin, J. Wang, J.M. Razal, L. Sun, X. Wang, Tunable photocatalytic selectivity of TiO₂/SiO₂ nanocomposites: Effect of silica and isolation approach, Colloids Surfaces A Physicochem. Eng. Asp. 552 (2018) 130–141.
- [12] C. Singh, A. Goyal, S. Singhal, Nickel-doped cobalt ferrite nanoparticles: Efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes, Nanoscale. 6 (2014) 7959–7970.
- [13] M. Kundu, B. Mondal, D. Das, U.K. Roy, Synthesis and Reactivity of Copper and Copper Containing Magnetically Separable Catalysts, ChemistrySelect. 7 (2022) e202104543.
- [14] B. Mondal, M. Kundu, S.P. Mandal, R. Saha, U.K. Roy, A. Roychowdhury, D. Das, Sonochemically Synthesized Spin-Canted CuFe₂O₄ Nanoparticles for Heterogeneous Green Catalytic Click Chemistry, ACS Omega. 4 (2019) 13845–13852.
- B.J. Sarkar, M. Kundu, B. Mondal, S. Mukherjee, A. Bandyopadhyay, U.K. Roy,
 Microstructural investigation of sonochemically synthesized Zn substituted CuFe₂O₄
 nanoparticles for heterogeneous green catalytic click chemistry and dye degradation, J.
 Mol. Struct. 1274 (2023) 134493.
- [16] S.M. Nikam, A. Sharma, M. Rahaman, A.M. Teli, S.H. Mujawar, D.R.T. Zahn, P.S.

Patil, S.C. Sahoo, G. Salvan, P.B. Patil, Pulsed laser deposited CoFe₂O₄ thin films as supercapacitor electrodes, RSC Adv. 10 (2020) 19353–19359.

- [17] C. Himcinschi, I. Vrejoiu, G. Salvan, M. Fronk, A. Talkenberger, D.R.T. Zahn, D. Rafaja, J. Kortus, Optical and magneto-optical study of nickel and cobalt ferrite epitaxial thin films and submicron structures, J. Appl. Phys. 113 (2013).
- [18] X. Zeng, J. Zhang, S. Zhu, X. Deng, H. Ma, J. Zhang, Q. Zhang, P. Li, D. Xue, N.J. Mellors, X. Zhang, Y. Peng, Direct observation of cation distributions of ideal inverse spinel CoFe₂O₄ nanofibres and correlated magnetic properties, Nanoscale. 9 (2017) 7493–7500.
- [19] A.S. Ponce, E.F. Chagas, R.J. Prado, C.H.M. Fernandes, A.J. Terezo, E. Baggio-Saitovitch, High coercivity induced by mechanical milling in cobalt ferrite powders, J. Magn. Magn. Mater. 344 (2013) 182–187.
- [20] N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Related magnetic properties of CoFe₂O₄ cobalt ferrite particles synthesised by the polyol method with NaBH₄ and heat treatment: new micro and nanoscale structures, RSC Adv. 5 (2015) 56560–56569.
- [21] S.K. Gore, R.S. Mane, M. Naushad, S.S. Jadhav, M.K. Zate, Z.A. Alothman, B.K.N. Hui, Influence of Bi³⁺-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite, Dalt. Trans. 44 (2015) 6384–6390.
- [22] D. Zhao, X. Wu, H. Guan, E. Han, Study on supercritical hydrothermal synthesis of CoFe₂O₄ nanoparticles, J. Supercrit. Fluids. 42 (2007) 226–233.
- [23] A. Kalam, A.G. Al-Sehemi, M. Assiri, G. Du, T. Ahmad, I. Ahmad, M. Pannipara, Modified solvothermal synthesis of cobalt ferrite (CoFe₂O₄) magnetic nanoparticles

photocatalysts for degradation of methylene blue with H_2O_2 /visible light, Results Phys. 8 (2018) 1046–1053.

- [24] L. Gan, S. Shang, C.W.M. Yuen, S.X. Jiang, E. Hu, Hydrothermal synthesis of magnetic CoFe₂O₄ /graphene nanocomposites with improved photocatalytic activity, Appl. Surf. Sci. 351 (2015) 140–147.
- [25] S. Huang, Y. Xu, M. Xie, Y. Ma, J. Yan, Y. Li, Y. Zhao, H. Xu, H. Li, Multifunctional C-Doped CoFe₂O₄ Material as Cocatalyst to Promote Reactive Oxygen Species Generation over Magnetic Recyclable C-CoFe/Ag-AgX Photocatalysts, ACS Sustain. Chem. Eng. 6 (2018) 11968–11978.
- [26] U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol-gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes, RSC Adv. 8 (2018) 17582–17594.
- [27] B. Trujillo-Navarrete, M. del Pilar Haro-Vázquez, R.M. Félix-Navarro, F. Paraguay-Delgado, H. Alvarez-Huerta, S. Pérez-Sicairos, E.A. Reynoso-Soto, Effect of Nd³⁺ doping on structure, microstructure, lattice distortion and electronic properties of TiO₂ nanoparticles, J. Rare Earths. 35 (2017) 259–270.
- [28] D.M. Tobaldi, R.A.S. Ferreira, R.C. Pullar, M.P. Seabra, L.D. Carlos, J.A. Labrincha, Nano-titania doped with europium and neodymium showing simultaneous photoluminescent and photocatalytic behaviour, J. Mater. Chem. C. 3 (2015) 4970– 4986.
- [29] V. Georgiadou, V. Tangoulis, I. Arvanitidis, O. Kalogirou, C. Dendrinou-Samara, Unveiling the physicochemical features of CoFe₂O₄ nanoparticles synthesized via a variant hydrothermal method: NMR relaxometric properties, J. Phys. Chem. C. 119 (2015) 8336–8348.

- [30] P. Laokul, S. Arthan, S. Maensiri, E. Swatsitang, Magnetic and Optical Properties of CoFe₂O₄ Nanoparticles Synthesized by Reverse Micelle Microemulsion Method, J. Supercond. Nov. Magn. 28 (2015) 2483–2489.
- [31] M. Basak, M.L. Rahman, M.F. Ahmed, B. Biswas, N. Sharmin, Calcination effect on structural, morphological and magnetic properties of nano-sized CoFe₂O₄ developed by a simple co-precipitation technique, Mater. Chem. Phys. 264 (2021) 124442.
- [32] B. Shunmughananthan, T. Dheivasigamani, J. Sthevan Kovil Pitchai, S. Periyasamy, Performance comparison of distinct bismuth molybdate single phases for asymmetric supercapacitor applications, Dalt. Trans. 51 (2022) 15579–15592.
- [33] D. Thangaraju, A. Durairajan, D. Balaji, S. Moorthy Babu, Synthesis and characterization of monoclinic KGd(WO₄)₂ particles for non-cubic transparent ceramics, Opt. Mater. (Amst). 35 (2013) 753–756.
- [34] J. Sthevan Kovil Pitchai, T. Dheivasigamani, B. Shunmughananthan, R. Arunagiri, S. Periyasamy, Single-wall and graphene-modified multiwall wasp nest shaped
 Bi₂Mo₂O₉ self-assembly for performance-enhanced asymmetric supercapacitor , J. Mater. Chem. C. 10 (2022) 16453–16464.
- [35] T. Thiyagarajan, V. Deivasigamani, M. Raj, C. Joseph, T. Dheivasigamani, B.
 Palanivel, M.S. Hamdy, M. Shkir, Facile synthesis and characterization of
 WO₃/CuWO₄ nanocomposites for the removal of toxic methylene blue dye, Korean J.
 Chem. Eng. 38 (2021) 952–965.
- [36] P. Shanmugam, T. Dheivasigamani, S. Moorthy Babu, M. Shkir, E. El Sayed Massoud, R. Marnadu, V.R. Minnam Reddy, A facile sol–gel synthesis and characterization of europium (Eu) doped β-Bi₂Mo₂O₉ nanoparticles with remarkably enhanced photocatalytic activity for waste-water treatments, Inorg. Chem. Commun.

146 (2022) 110163.

- [37] B.J. Rani, M. Ravina, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Ferrimagnetism in cobalt ferrite (CoFe₂O₄) nanoparticles, Nano-Structures and Nano-Objects. 14 (2018) 84–91.
- [38] K. Gandha, K. Elkins, N. Poudyal, J. Ping Liu, Synthesis and characterization of CoFe₂O₄ nanoparticles with high coercivity, J. Appl. Phys. 117 (2015).
- [39] N. Liu, P. Du, P. Zhou, R.G. Tanguturi, Y. Qi, T. Zhang, C. Zhuang, Annealing temperature effects on the cation distribution in CoFe₂O₄ nanofibers, Appl. Surf. Sci. 532 (2020) 3–7.
- [40] A. V. Ravindra, P. Padhan, W. Prellier, Electronic structure and optical band gap of CoFe₂O₄ thin films, Appl. Phys. Lett. 101 (2012) 1–5.
- [41] T. Wang, T. Zhu, M. Brunet, C. Deshayes, P. Sciau, Raman study of Yuan Qinghua porcelain: the highlighting of dendritic CoFe₂O₄ crystals in blue decorations, J. Raman Spectrosc. 48 (2017) 267–270.
- [42] F.R. Mariosi, J. Venturini, A. da Cas Viegas, C.P. Bergmann, Lanthanum-doped spinel cobalt ferrite (CoFe₂O₄) nanoparticles for environmental applications, Ceram. Int. 46 (2020) 2772–2779.
- [43] M. Sundararajan, V. Sailaja, L. John Kennedy, J. Judith Vijaya, Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: Kinetics and mechanism, Ceram. Int. 43 (2017) 540–548.
- [44] S. Ikram, J. Jacob, K. Mahmood, K. Mehboob, M. Maheen, A. Ali, N. Amin, S. Hussain, F. Ashraf, S.Z. Ilyas, A Kinetic study of Tb³⁺ and Dy³⁺ co-substituted CoFe₂O₄ spinel ferrites using temperature dependent XRD, XPS and SQUID

measurements, Ceram. Int. 46 (2020) 15943–15948.

- [45] R.S. Gaikwad, S.-Y. Chae, R.S. Mane, S.-H. Han, O.-S. Joo, Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application, Int. J. Electrochem. 2011 (2011) 1–6.
- [46] S.R. Naik, A. V. Salker, Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy, J. Mater. Chem. 22 (2012) 2740–2750.
- [47] G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y.
 Hayakawa, G. Ravi, Structural, optical and antibacterial activity studies of neodymium doped ZnO nanoparticles, J. Mater. Sci. Mater. Electron. 26 (2015) 7564–7576.
- [48] V. Santhana, D. Thangaraju, A. Tanaka, W. Inami, S. JayaKumar, S. Matsuda, Development of Hybrid TiO₂/Paint Sludge Extracted Microbe Composite for Enhanced Photocatalytic Dye Degradation, J. Inorg. Organomet. Polym. Mater. 30 (2020) 2805–2813.
- [49] C.M. Magdalane, G.M.A. Priyadharsini, K. Kaviyarasu, A.I. Jothi, G.G. Simiyon, Synthesis and characterization of TiO₂ doped cobalt ferrite nanoparticles via microwave method: Investigation of photocatalytic performance of congo red degradation dye, Surfaces and Interfaces. 25 (2021) 101296.
- [50] J. Revathi, M.J. Abel, V. Archana, T. Sumithra, R. Thiruneelakandan, J. Joseph prince, Synthesis and characterization of CoFe₂O₄ and Ni-doped CoFe₂O₄ nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight, Phys. B Condens. Matter. 587 (2020) 412136.
- [51] S. Chen, D. Jiang, G. Zeng, H. Chi, L. Li, Y. He, F. Ke, J.D. Xiao, S. Ye, Dysprosium

doped CoFe₂O₄ with enhanced magnetic property and photodegradation activity of methyl orange, Mater. Lett. 284 (2021) 2–5.

- [52] V. Mahdikhah, S. Saadatkia, S. Sheibani, A. Ataie, Outstanding photocatalytic activity of CoFe₂O₄ /rGO nanocomposite in degradation of organic dyes, Opt. Mater. (Amst). 108 (2020) 110193.
- [53] N. Tariq, R. Fatima, S. Zulfiqar, A. Rahman, M.F. Warsi, I. Shakir, Synthesis and characterization of MoO₃/CoFe₂O₄ nanocomposite for photocatalytic applications, Ceram. Int. 46 (2020) 21596–21603.
- [54] M. Sun, X. Han, S. Chen, Synthesis and photocatalytic activity of nano-cobalt ferrite catalyst for the photo-degradation various dyes under simulated sunlight irradiation, Mater. Sci. Semicond. Process. 91 (2019) 367–376.
- [55] J. Parhizkar, M.H. Habibi, S.Y. Mosavian, Synthesis and Characterization of Nano CoFe₂O₄ Prepared by Sol-Gel Auto-Combustion with Ultrasonic Irradiation and Evaluation of Photocatalytic Removal and Degradation Kinetic of Reactive Red 195, Silicon. 11 (2019) 1119–1129.
- [56] N. Abbas, N. Rubab, N. Sadiq, S. Manzoor, M.I. Khan, J.F. Garcia, I.B. Aragao, M. Tariq, Z. Akhtar, G. Yasmin, Aluminum-Doped Cobalt Ferrite as an Efficient Photocatalyst for the Abatement of Methylene Blue, Water. 12 (2020) 2285.
- [57] D. Uzunoğlu, M. Ergüt, P. Karacabey, A. Özer, Synthesis of cobalt ferrite nanoparticles via chemical precipitation as an effective photocatalyst for photo fentonlike degradation of methylene blue, Desalin. Water Treat. 172 (2019) 96–105.

Figure 1: Comparitive XRD pattern of CoFe₂O₄, 5% Nd: CoFe₂O₄,

Figure 2: Comparative Raman spectra of CoFe₂O₄, 5% Nd: CoFe₂O₄,

Figure 3: UV absorbance (a) and reflectance (b) spectra of CoFe₂O₄, 5% Nd: CoFe₂O₄,

Figure 4: XPS graphs of Co 2p (a), Fe 2p (b), O 1s (c) and Nd 3d (d) for CoFe₂O₄ and

15% Nd: CoFe2O4

Figure 5: SEM images of CoFe₂O₄ (a-d), 5% Nd: CoFe₂O₄ (e-h),

10% Nd: CoFe₂O₄ (i-l) and 15% Nd: CoFe₂O₄ (m-p).

Figure 6: Photocatalytic degradation of methylene blue using CoFe₂O₄, 5% Nd:

CoFe₂O₄, 10% Nd: CoFe₂O₄ and 15% Nd: CoFe₂O₄.

Figure 7: Degradation percentage of Methylene blue on CoFe2O4, 5% Nd: CoFe2O4,

CoFe2O4, 10% Nd: CoFe2O4 and 15% Nd: CoFe2O4.

Table1: Photocatalytic activity of Nd doped CoFe₂O₄ in comparison to other previous

reports.

Photocatalyst	Synthesis	Model	Result	Ref
	route	pollutant		
TiO2 doped	Microwave	Congo red	The photocatalytic activity was	[49]
CoFe ₂ O ₄	method	_	about 85 and 97% for catalyst	
			and catalyst/H ₂ O ₂ within 120	
			min of time.	
Ni doped	Co-	Methylene blue,	Degradation of MB, RhB and	[50]
CoFe ₂ O ₄	precipitation	Rhodamine B,	Crystal violet with Ni- CoFe ₂ O ₄	
		Crystal violet	was found to be 83.4, 63.62 and	
			82.76% respectively within 90	
			min of irradiation	
Dy doped	Co-	Methyl orange	The 78.65% of MO dye was	[51]
CoFe ₂ O ₄	precipitation		degraded with the presence of	
			synthesised photocatalyst within	
	~		2 hours	5.5.0.7
CoFe ₂ O ₄ /	Co-	Methylene blue,	The CoFe2O4/rGO	[52]
rGO	precipitation	Rhodamine B,	nanocomposite material	
		Methyl orange	degraded MB more efficiently	
			than MO and RnB dyes $(89\%,$	
	C	Mada lana hisa	64%, and 58%, respectively).	[52]
MOU3/	Co-	Rhedemine D	Almost 91% degradation of the	[33]
$COFe_2O_4$	precipitation	Crustal violet	MB, 54% degradation of anystal	
		Crystal violet	violet was observed by the as	
			synthesized nanocomposite	
CoFeeO	Microwave	Congo red	The addition of CoFe2O4	[54]
010204	assisted wet	4-Nitrophenol	photocatalyst exhibits improved	[24]
	chemistry	i i ili opnonor	photocatalytic activity for	
	method		degradation of Congo red (96%)	
			and 4-N (63%)	
CoFe ₂ O ₄	Sol-gel method	Reactive red	The cobalt ferrite on Reactive	[55]
		195	Red 195 (RR195) shows 74%	
			deterioration in less than 2 hours	
Al doped	Solvothermal	Methylene blue	The 93% methylene blue dye	[56]
CoFe ₂ O ₄	method		was degraded by	
			Co _{0.1} Al _{0.03} Fe _{0.17} O _{0.4} within 120	
			min	
CoFe ₂ O ₄	Chemical	Methylene blue	Achieved 99.75% photo Fenton-	[57]
	precipitation		like degradation of MB in the	
			presence of CoFe2 O4	
Nd doped	Sol-gel method	Methylene blue	The 5% Nd doping to CoFe ₂ O ₄	This
CoFe ₂ O ₄			enhanced the degradation	work
			performance of CoFe ₂ O ₄	

 Table 2: Kinetic parameters and efficiency of photocatalytic degradation of methylene

 blue with synthesized photocatalysts.

Photocatalyst	The rate constant (k) (hour ⁻¹)	Correlation coefficient (R ²)	Degrading efficiency (%)
CoFe ₂ O ₄	0.2828	0.996	67
5% Nd:CoFe ₂ O ₄	0.3243	0.998	72
10% Nd:CoFe ₂ O ₄	0.2820	0.995	69
15% Nd:CoFe ₂ O ₄	0.2298	0.997	61