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Abstract: Considerable research has considered the design of low-power and
high-speed devices. Designing integrated circuits with low-power consump-
tion is an important issue due to the rapid growth of high-speed devices.
Embedded static random-access memory (SRAM) units are necessary com-
ponents in fast mobile computing. Traditional SRAM cells are more energy-
consuming and with lower performances. The major constraints in SRAM
cells are their reliability and low power. The objectives of the proposed
method are to provide a high read stability, low energy consumption, and bet-
ter writing abilities. A transmission gate-based multi-threshold single-ended
Schmitt trigger (ST) 9T SRAM cell in a bit-interleaving structure without a
write-back scheme is proposed. Herein, an ST inverter with a single bit-line
design is used to attain the high read stability. A negative assist technique is
applied to alter the trip voltage of the single-ended ST inverter. The multi-
threshold complementary metal oxide semiconductor (MTCMOS) technique
is adopted to reduce the leakage power in the proposed single-ended TG-
ST 9T SRAM cell. The proposed system uses a combination of standard
and ST inverters, which results in a large read stability. Compared with the
previous ST 9T, ST 11T, 11T, 10T, and 7T SRAM cells, the proposed cell is
implemented in Cadence Virtuoso ADE with 45-nm CMOS technology and
consumes 35.80%, 42.09%, 31.60%, 12.54%, and 31.60% less energy for read
operations and 73.59%, 93.95%, 92.76%, 89.23%, and 85.78% less energy for
write operations, respectively.

Keywords: Bit-interleaving; low power; SRAM cell; schmitt trigger;
transmission gate

1 Introduction

As technology evolves each day, the important design constraints for transistor scaling are the
speed and integrated density, while leakages and reliability issues degrade the overall device perfor-
mances. Further scaling results in short-channel effects, and overcoming this effect has led to several
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leakage power reduction techniques in existing designs [1]. Electronic devices, like microprocessors and
microcontrollers, require high performances based on low power and high speeds. Such devices may
be packed compactly and handled easily but require a memory cell with a low power consumption
[2,3]. A memory cell is a fundamental block in computer memory, and most digital devices are made
using SRAM [4,5]. The high operating speed capability of SRAM makes it widely used over dynamic
random-access memory (DRAM), even though SRAM designs are comparatively more complex. The
SRAM memory cell is a flip-flop circuit and is typically implemented using metal oxide field-effect
transistors (MOSFETs). SRAM plays an important role in the System on Chip (SoC) as it is the
primary element in chip design. SRAM has a larger value of switched capacitance in the bit line (BL)
and word line (WL), which requires a higher energy cost. Thus, reducing the power consumption
on SRAM reduces the power consumption of SoC devices [6]. A MOSFET has three regions of
operations: i) sub-threshold, ii) near-threshold, and iii) super threshold. In the sub-threshold region,
the gate-to-source voltage is not as high as the edge voltage of a MOSFET, so this region is also called
the cut-off region where the effects of current on the gate voltage are exponential. Conduction in the
cut-off region is denoted as sub-threshold conduction, where there are more leakages even though the
power consumption is low [7,8]. In the super threshold region, the gate-to-source voltage is greater
than the MOSFET threshold voltage and is called the saturation region as there is no effect on the
current with a greater drain voltage [9].

In the near-threshold voltage (NTV) region, the voltage of the gate-source is greater than the
threshold voltage (Vth) of the MOSFET. Here, the current increases with the voltage at the drain
terminal, and the current leakage is low compared to sub-threshold operations [10,11]. This results
in greater improvements in reducing the power consumption compared to super threshold operations
[12–14]. However, soft errors are induced in the near-threshold operation region due to the effects of
alpha particles [15]. High-energy alpha particles interact with the memory cell and interrupt operations
or even cause damage [16]. SRAM designs can be categorized based on interconnections with the
inverter as i) cross-coupled standard inverter, ii) cross-coupled Schmitt-trigger (ST) inverter, and iii)
cross-coupled ST inverter with a standard inverter. First, various inverters that fall under the cross-
coupled standard inverter category are the conventional 6T [17], 8T [18], Pasandi’s 9T [19], Chang’s
9T [20], Joon’s 10T [21], and 7T [22]. In 10T SRAM, a single BL is used for both read/write to
reduce the power consumption [23], and in 11T, power gating transistors and a transmission gate are
implemented to reduce the power leakage [24]. The read disturbance from BL or bit line bar (BLB)
in the conventional 6T can flip the stored data. In 6T, the read and write stabilities are not achieved
simultaneously because these depend on the beta- and alpha-ratios, respectively. The 7T SRAM cell
is not affected by any RHSc issues and does not have any read disturbances that require low power.
The advantages of cross-coupled ST inverters in SRAM designs over the standard inverter SRAM
designs are i) the cross-coupled structure of the ST inverter with a standard inverter to improve the
read stability, and ii) the ST inverter write assist scheme with selective power gating to improve the write
capability. The ST 10T [25] and ST 11T [26] belong to the cross-coupled ST inverter group. In ST 11T,
the cross-coupled ST inverter is connected with the read buffer, and a single BL structure is used for
read operations, where the read buffer improves the hold and read stabilities. In the cross-coupled ST
inverter with a standard inverter category, the ST 9T [27] has a single BL structure and is designed with
WBSBS. Selective power gating is used to develop the write ability. The ST voltage of the 9T inverter
can be controlled through the write-assist scheme. The MTCMOS method offers a high performance
in low-power designs [28]. Transmission gates reduce the leakage power to a greater extent [29], and the
ST inverter [30] provides a robust security and high read stability while the performance characteristic
of the standard inverter decays for smaller supply voltages (Vdd). Based on several investigations,
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the literature suggests that current designs have problems, such as read/write stability and a reduced
leakage power. To address these issues, the proposed method provides the following contributions.

• Compared to ST 10T, the proposed design has a large read stability as it uses a combination of
standard and ST inverters.

• In place of single-pass gates in the literature, a transmission gate is implemented to reduce
unnecessary switching during the hold mode.

• When a read disturbance reaches the storage node, the ST inverter is more resistant to read
interruptions compared to ideal inverters.

• The proposed method holds column-based assist techniques to reduce the energy consumption.
• The read static noise margin of the proposed cell is high compared to the 10T SRAM and 6T

SRAM cells.

The remainder of this work is organized as follows. Section 2 introduces the proposed TG-ST 9T
SRAM design and its operation. Section 3 analyzes the performance of the proposed design with the
N-curve metric. Section 4 compares the results with the ST 9T SRAM cell based on power and delay,
and Section 5 concludes this article.

2 Proposed TG-ST 9T SRAM

Several SRAM cell designs have been investigated to reduce the power, and significant constraints
have been considered in the memory portion of the chip as the best possible design pathway, as
described in the previous section. This section discusses the proposed SRAM cell design. The schematic
and timing diagrams of the proposed SRAM cell are given in Figs. 1a and 1b. This method adapts the
MTCMOS technique based on a single BL structure, which includes a high Vth with nominal Vth
devices to reduce leakage. The proposed cell has a cross-coupled standard inverter and a single-ended
modified ST inverter with both having high Vth. In place of a single-pass gate in the literature, a
transmission gate (TP and TN) is used with one enable (EN) transistor connected between the two
inverters, which reduces the unnecessary switching activities during hold mode. The TP, TN, and EN
all have a nominal Vth. The word lines (WL and WLB) are row-based signals and the WWL is a
column-based signal. The WL is connected to the TN and EN gates, the WLB is connected to the TP
gate, and the WWL is connected to the source of the feedback transistor (NF).

Figure 1: (a) Schematic and (b) Timing diagrams of the proposed SRAM cell
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2.1 Proposed Method: Read Operation

The read operation of the proposed cell is depicted in Fig. 2. The BL is pre-charged to VDD
during read operations, the WWL is set to “1,” and the inverter controls node Q. Activating the row-
dependent signals (WL and WLB) allows turning on the transmission gate. If Q has zero charge, the
BL discharges; otherwise, there is no change in the BL. Disturbances caused by the BL during read
operations are the most common cause of read failures. If the storage node is enabled through read
disturbances, then the voltage attains the inverter trip voltage. The proposed design addresses this
problem by combining a regular inverter and an ST inverter into a cross-coupled structure. Figs. 3a
and 3b represent the single-ended modified ST inverter and its DC characteristics, respectively. The
ST inverter has a greater trip voltage than the normal inverter when the input changes from logical
“0” to logical “1.” The voltage at node VX increases with the NF transistor, which reduces the strength
of PDR1 transistor. As a result, when a read disturbance reaches the storage node, the ST inverter is
more resistant to read interruptions compared with an ideal inverter.

Figure 2: Read operations in the proposed ST inverter scheme

Figure 3: (a) Schematic diagram of the ST inverter and (b) Its DC characteristics at VDD = 0.5 V
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2.2 Write-0 Operation

Write operations are conditional on whether the information to be composed on the SRAM cell
is a “1” or “0.” Fig. 4a illustrates the write-0 operation. The column-based signal WWL remains “1”
in the write-0 operation, and the write driver sets BL to “0”, WL to “1,” and WLB to “0.” The Q node
is pushed to “0” through the turned-on transmission gate, and the ST inverter flips. The proposed
SRAM cell cuts off the VDD by disconnecting the pMOS transistor of the standard inverter, which
achieves write-0 capability during the write operations.

Figure 4: Proposed TG-ST 9T static RAM (a) Write-0 and (b) Write-1 operations

2.3 Write-1 Operation

The write-1 process is illustrated in Fig. 4b. During write-1 operations, the write driver pushes the
BL to “1,” the WL is ON, and the WLB is disabled. The proposed cell has a negative VWWL assist
technique to boost its write-1 ability. Once the negative voltage is provided to the WWL, the turned-on
feedback transistor NF drives the Vx node to a negative voltage. As the voltage at Vx decreases, the
power of PDR1 increases and lowers the ST inverter trip voltage. As a result, the write-1 operation
becomes more straightforward.

The amount of change in the trip voltage that corresponds to the increased PDR1 is shown in
Fig. 5. When the column-based WWL signal is held at 0 V, the ST inverter trip voltage decreases by
16.61%. As the feedback function is removed by turning off the feedback transistor NF, the trip voltage
is identical to that of a regular inverter. The trip voltage decrease to 64.85% using the negative assist
technique on the column-based signal from the WWL. Lowering the trip voltage allows the negative
assist technique to boost the write-1 ability.
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Figure 5: DC characteristics of the negative VWWL given at VDD = 0.5 V

3 Performance Analysis

The stability assessment and evaluation of the N-curve metric is implemented in the 7T, 10T, 11T,
ST 11T, ST 9T, and the proposed TG-ST 9T SRAM cells.

In the N-curve metric, the stability of the SRAM depends on the supply voltage. The SRAM cell
becomes unstable if the supply voltage is reduced. The N-curve is the preferred metric to measure
the stability of the SRAM. Drawing a butterfly/N-curve is a single plot with detailed information
on the stability of the SRAM and write operation. For CR = 10, the stability parameters such as the
static voltage noise margin (SVNM), static current noise margin (SINM), write trip current (WTI),
and write trip voltage (WTV) are observed to provide reasonably better values compared to CR = 9,
8, and 7 in the 45-nm CMOS technology, as summarized in Tab. 1. Fig. 6 shows the N-curve of the
proposed design, where the four N-curve parameters are utilized to characterize the device stability.
Comparisons of the parameters SVNM, SINM, WTI, and WTV for the conventional SRAM cells
(7T, 10T, 11T, ST 11T, ST 9T, and low leakage 10T) with the proposed method are given in Tab. 2.

Table 1: N-curve analysis of the proposed design at various cell ratios

Technology Parameters CR = 10 CR = 9 CR = 8 CR = 7

45-nm CMOS SVNM (mV) 233.27 223.46 213.31 207.95
SINM (uA) 1.73 1.49 1.25 1.01
WTI (uA) −0.729 −0.729 −0.728 −0.719
WTV (mV) 193.05 193.34 193.62 184.64
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Figure 6: N-curve analysis of the proposed design at 0.5 V

Table 2: Comparison of N-curve results of various SRAM cell

SRAM cell 7T SRAM
[22]

10T SRAM
[23]

11T SRAM
[24]

ST 11T
SRAM
[26]

ST 9T
SRAM
[27]

Proposed
design

SVNM (mV) 150 90 246.494 172.873 229.25 233.27
SINM (uA) 0.159 0.1 0.302 0.084 0.205 1.7
WTI (uA) −0.736 −2.399 −0.351 −0.238 −0.169 −0.7
WTV (mV) 260 410 253.5 230 184.47 193.05

4 Simulation Results

The implementation results of the proposed TG ST-9T are compared with other SRAM cells
using 45-nm CMOS technology. Monte Carlo simulations are performed in HSPICE to evaluate the
SRAM cell design. Statistical analysis for the stability is achieved using the noise margin (NM), which
is another key factor in SRAM cells and is an important constraint in their construction.

4.1 Read Delay

The time taken for the response when the input signal is applied to the WL is denoted as the read
delay. Fig. 7 shows the read delay of the proposed design with various supply voltages of 0.40, 0.42,
0.44, 0.46, 0.48, and 0.50 V. A reduction in the delay between the ST 11T and ST 9T is the same as the
reduction between the ST 9T and the proposed design with 0.44 and 0.40 V. Thus, it is perceived and
verified that the design holds the minimum delay over the 7T SRAM.
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Figure 7: Read delay comparison at various supply voltages

4.2 Write Assist Technique

Various write assist techniques have been proposed and used in several memory cell designs.
Among the available write assist techniques, the suppressed cell VDD [31], raised cell VSS [32], boosted
VWL [33], negative VBL [34], and negative VWWL assist techniques are commonly used in 7T, ST
11T, ST 9T, 11T, and 10T SRAM cells.

4.3 Half-Selected Cell Stability and Write Ability

All selected columns must be controlled in column-based assist techniques, which leads to an
increased energy consumption, whereas only one row is selected and controlled in row-based assist
techniques to attain a low power. Due to the low-energy in row-based support methods, the row-based
boosted VWL is chosen with a boosted WL voltage to ensure the circuit has a 3σ stability. The negative
VWWL for a 3σ write capability of the proposed and ST 9T SRAM cells are shown in Fig. 8, which
indicates the proposed method has better results.
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Figure 8: Comparison of the 3σ write capabilities for the negative VWWL and ST 9T SRAM cells

Monte Carlo simulations were implemented to estimate the write-0 and write-1 operations for
each SRAM cell. Statistical simulations are performed using the static power loss of the proposed cell
through the Monte Carlo distribution, as shown in Fig. 9. The waveforms for the control terminals
with write-0 and write-1 procedures and the storage node at Vdd = 0.5 V are obtained from 1000
Monte Carlo simulations to verify the required functionality of the circuit.
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Figure 9: Write-0 and write-1 operational waveforms for (a) The control signals, (b) Selected cells in
the storage node, and (c) Column-based cells

4.4 Leakage Power

The leakage power of the proposed SRAM cell is compared with various SRAM cells at v = 0.5 V,
as shown in Fig. 10a. As the ST inverter has a greater trip voltage than standard inverters, the SRAM
cells that use cross-coupled ST inverters have higher hold stability yields than cross-coupled standard
inverter SRAM cells. The leakage power of the proposed design has a maximum of 52.72% greater
than the 7T SRAM cell, 82.16% greater than the 10T SRAM Cell, 77.27% greater than the 11T SRAM
Cell, 50.83% greater than the ST 11T SRAM cell, and 36.72% lower than the ST 9T Cell due to the
MTCMOS in the proposed design.

4.5 Power Consumption

A comparison of the total power consumption for the proposed SRAM cell with traditional cells
is performed and shown in Fig. 10b. The proposed design has 72.18%, 64.98%, 72.28%, 77.76%, and
33.18% smaller power consumptions compared with the 7T, 10T, 11T, ST 11T, and ST 9T SRAM cells,
respectively.
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Figure 10: (a) Leakage power comparison of various SRAM cells and (b) Total power consumption at
0.5 V

4.6 Comparison at Vdd = 0.5 V

The proposed SRAM cell is implemented and simulated in the Cadence virtuoso environment for
45-nm CMOS technology. An energy-delay product (EDP) is commonly used to consider both the
energy and efficiency. The power supply (Vdd) and EDP will not reflect the delay and energy values.
Thus, these will be considered based on the power supply. Eqs. (1)–(3) show the EDP, static PDP, and
PDP calculations, respectively. Tab. 3 shows simulations of the proposed and previous SRAM Cells at
Vdd.

EDP = Energy ∗ delay (1)

Static PDP = Leakage power ∗ delay (2)

PDP = Total power ∗ delay (3)

Tab. 3 indicates that the proposed Multi-Vt TG-ST 9T SRAM cell consumes a read energy of 50.2
nJ whereas the ST 9T, ST 11T, 11T, 10T, and 7T SRAM cells have read energies of 78.2, 86.7, 73.4,
57.4, and 73.4 nJ, respectively. The write energy of the proposed SRAM cell is 6.47 nJ and the ST 9T,
ST 11T, 11T, 10T, and 7T SRAM consume 24.5, 107, 89.4, 60.1, and 45.5 nJ, respectively. Similarly,
the total energy of the proposed SRAM cell design is 5.39 nJ and those for the ST 9T, ST 11T, 11T,
10T, and 7T SRAM are 24.8, 48.3, 32.1, 25.2, and 32.7 nJ, respectively. Thus, the proposed design has
low read and write energies.

Table 3: Comparison of SRAM approaches for 45-nm CMOS technologies

SRAM cell 7T [22] 10T [23] 11T [24] ST 11T [26] ST 9T [27] Proposed

#BL 1-BL 1-RBL
1-WBL

1-BL 1-BL
1-RBL

1-BL 1-BL

#WL 1-WL
1-WLB
1-WWL

1-WWL
1-RWL

1-WL
1-WLB
1-RWL
1-WWL

1-WL
1-WLB
1-RWL

1-WL
1-WWLA
1-WWLB

1-WL
1-WLB
1-WWL

Supply voltage
(V)

0.5 0.5 0.5 0.5 0.5 0.5

(Continued)
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Table 3: Continued
SRAM cell 7T [22] 10T [23] 11T [24] ST 11T [26] ST 9T [27] Proposed

Read delay (ns) 120 153 122 179 122 69.4
Write ability
yield

3σ 3σ 3σ 3σ 3σ 3σ

Write assist
voltage (row)

0.5 V 0.5 0.5 0.5 V 0.6 V Not
required

Write assist
voltage
(column)

- - - - 0.6 V 0.3 V

Leakage power
(nW)

6.76 2.55 3.25 7.03 22.6 14.3

Static PDP
(f ws)

0.811 0.39 0.396 1.258 2.757 0.992

Total power (W) 55 43.7 55.2 68.8 22.9 15.3
PDP (f ws) 6.6 6.68 6.73 12.31 2.79 1.06
Read energy
(nJ)

73.4 57.4 73.4 86.7 78.2 50.2

Write energy
(nJ)

45.5 60.1 89.4 107 24.5 6.47

Total energy
(nJ)

32.7 25.2 32.1 48.3 24.8 5.39

EDP (f Js) 3.92 3.901 3.916 8.627 3.025 0.374

5 Conclusions

The increased power dissipation is due primarily to the scaling down of the system dimensions,
input voltage, and threshold voltage. The proposed design uses a column-based assist technique to
further reduce the energy consumption. The energy and delay are compared for the 7T SRAM, 10T
SRAM, 11T SRAM, ST 11T SRAM, ST 9T SRAM, and the proposed design. The SRAM cell designs
are simulated with 45-nm CMOS technology for a 0.5 V VDD using the Cadence Virtuoso ADE.
Power reduction techniques such as the MTCMOS technique and transmission gate property allow the
proposed design to reduce the power consumption and operate the SRAM cells faster. In the proposed
method, the ST inverter with a single BL design is used to attain a high read stability. The proposed
multi vt TG-ST improves the write ability yield using the negative VWWL write assist technique, which
does not require a write assist row voltage. The total energy consumption is only 5.39 nJ and is lower
than the ST 9T, ST 11T, and 7T SRAM cells. The proposed multi vt TG-ST 9T SRAM cell design has
87.63%, 95.66%, 90.44%, 90.41%, and 90.45% smaller EDPs than the ST 9T, ST 11T, 11T, 10T, and
7T SRAM cells, respectively, at a supply voltage of 0.5 V.
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