SUSTAINABLE MACHINING and GREEN MANUFACTURING

edited by S. Thirumalai Kumaran *and* Tae Jo Ko

WILEY

Sustainable Machining and Green Manufacturing

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Sustainable Machining and Green Manufacturing

Edited by **S. Thirumalai Kumaran**

Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, India

and

Tae Jo Ko

Department of Mechanical Engineering, Yeungnam University, South Korea

WILEY

This edition first published 2024 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2024 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-394-19783-5

Cover image: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	Preface			XV	
1	Effect of Granite Filler on Mechanical Properties and Free				
	Dar	nping	of Silk-Sisal-Reinforced Epoxy Composites	1	
K. Sripriyan and S. Karthick					
	1.1	Intro	duction	1	
	1.2	Mater	rial and Preparation	3	
		1.2.1	Materials Involved	3	
		1.2.2	Composite Structure Preparation	4	
	1.3	Resul	t and Discussion	4	
		1.3.1	Silk-Sisal on Mechanical Properties	5	
			1.3.1.1 Flexural Strength	5	
			1.3.1.2 Impact Strength	6	
		1.3.2	Damping Response	7	
		1.3.3	Fracture Morphology	8	
		1.3.4	Biodegradability	9	
	1.4	Conc	lusions	10	
		Refer	ences	11	
2	Effe	ct of P	lastic Particulate Addition on Polymer Composite		
	Rei	nforced	l with <i>Prosopis juliflora</i> Fiber	13	
	Sak	thi Bal	an G., Aravind Raj S., Jafrey Daniel James D.		
	and	Rames	sh M.		
	2.1	Intro	duction	14	
	2.2	Mater	rials and Methods	15	
	2.3	Resul	ts and Discussion	18	
		2.3.1	Influence of Process Parameters	18	
		2.3.2	Regression Analysis	22	
		2.3.3	Optimized Responses	27	
	2.4	Conc	lusion	29	
		Refer	ences	30	

vi Contents

3	Pro	ct of Various Manufacturing Techniques on Mechanical perties of Biofiber-Reinforced Composites Sasi Kumar, S. Sathish, M. Makeshkumar, S. Gokulkumar,	33				
	<i>L. P</i>	rabhu, S. Hemalatha, S. Ponnavan and Nancy Chopra					
	3.1	Introduction	34				
	3.2	Manufacturing Methods	35				
	3.3	Hand Layup Technique	36				
	3.4	Compression Techniques	39				
		3.4.1 Mechanical Properties of Products Made					
		by Compression Molding Techniques	40				
	3.5	Injection Technique	45				
	3.6	Filament Techniques	46				
	3.7	Vacuum-Assisted Resin Transfer Molding Technique	46				
	3.8	Spray Molding Technique	53				
	3.9		54				
		References	55				
4	Elec	ctrical Discharge Machining of Al-B ₄ C Composite					
		Biomedical Applications	65				
	S. Suresh Kumar, S. Thirumalai Kumaran, G. Kalusuraman						
	and G. S. Samy						
	4.1	Introduction	66				
	4.2	Materials and Methods	68				
	4.3	Results and Discussion	71				
		4.3.1 Surface Roughness and Overcut	71				
		4.3.2 Material Removal Rate	73				
		4.3.3 Surface Morphology	75				
	4.4	Conclusion	76				
		References	76				
5	Gre	en Manufacturing of Natural Fiber Composite	79				
	Mee	enal Batra and Alka Bali					
	5.1	Introduction	80				
	5.2	Characteristics of Natural Fibers	81				
	5.3	Classes of Natural Fibers	82				
	5.4	Polymer Matrix	84				
	5.5	Applications of Natural Fiber Composites	85				
		5.5.1 Applications in Automotive and Aerospace Industry	85				
		5.5.1 Applications in Automotive and Actospace industry	05				
			86				

5.6	-	ocessing of Natural Fiber Composites	87
	5.6.1		87
	5.6.2		
		Compatibilizing Agents	88
5.7		cation of Natural Fiber Composites	88
	5.7.1	Open Molding Techniques	88
		5.7.1.1 Hand Lay Technique	89
		5.7.1.2 Spray Up Technique	89
	5.7.2	Closed Molding Techniques	89
		5.7.2.1 Resin Transfer Molding	90
		5.7.2.2 Resin Injection Molding	90
		5.7.2.3 Compression Molding Technique	91
		5.7.2.4 Vacuum Bagging Process	91
		5.7.2.5 Vacuum-Assisted Resin Transfer Molding	91
5.8	Addit	ive Manufacturing	92
	5.8.1	Stereolithography	94
	5.8.2	0 0	94
	5.8.3	Fused Filament Fabrication	94
	5.8.4	Laminated Object Manufacturing	95
	5.8.5	Direct Ink Writing	95
	5.8.6	Selective Laser Sintering	96
	5.8.7	Binder Jetting	96
	5.8.8	Electron Beam Melting	96
5.9	Addit	ive Manufacturing of Different Composites	97
5.10	Critic	al Issues During Processing of Natural Fiber	
	Comp	posites	102
	5.10.1	Thermal Stability	102
	5.10.2	Hydrophilic Nature of Natural Fibers	102
	5.10.3	Fiber Breakage During Processing	102
	5.10.4	Moisture Absorption and Distribution of Fiber	
		Inside the Matrix	103
5.11	Concl	usion	103
	Refere	ences	104
Mar	nufactu	ring Issues and Process Parameters of Composite	
		or Additive Manufacturing Process	115
Jafr	ey Dan	iel James D., Ramesh M., Sakthi Balan G.	
and	Aravin	ıd Raj S.	
6.1		luction	116
6.2	Mater	ials and Properties	117
	6.2.1	Preparation of HDPE/PBI Filaments	117

6

7

	6.2.2	Processing Conditions for HDPE/PBI			
		Nanocomposites	119		
6.3	Resul	ts and Discussion	120		
	6.3.1	Screw Speed of Volumetric Hopper for the			
		Production of the HDPE/PBI Composite	120		
	6.3.2	Temperature Profile Distribution and Zone Barrel			
	Temperatures for the TSE to Fabricate HDPE/PBI				
		Nanocomposites	120		
	6.3.3	TSE Screw Speed for HDPE/PBI Composite			
		Material Manufacture	122		
	6.3.4	TSE Degassing Pressure for Manufacturing			
		of HDPE/PBI Composites	122		
	6.3.5	TSE Cooling Length for Manufactured HDPE/PBI			
		Composite Strands	123		
	6.3.6	Extrusion Parameters for Manufacturing			
		of HDPE/PBI Composites	124		
	6.3.7	Manufacturing Issues During the Process			
		of Filament Preparation	124		
		6.3.7.1 Thinning of Filament	124		
		6.3.7.2 Bending of Filament	125		
		6.3.7.3 Impurities and Bulges	125		
		6.3.7.4 Porosity in Filament	125		
		Tensile Test	126		
		FE-SEM	127		
6.4		lusion	128		
	Refer	ences	128		
Mat	terial S	ustainability During Friction Stir Joining	131		
		l-Sabur and M. Serier			
7.1	Intro	duction	132		
7.2	FSW	Parameters	134		
	7.2.1	Rotation Tool Speed and Traverse Velocity	134		
		Plunge Depth and Tilt Angle	136		
7.3	FSW	Sustainability Review	136		
7.4	FSW	Sustainability Aspects	137		
	7.4.1	Minimizing the FSW Costs	138		
	7.4.2	Minimizing the FSW Energy Consumption	139		
	7.4.3	Maximizing the FSW Process Efficiency	140		
	7.4.4	Minimizing the Environmental Impact	141		
7.5	Recer	nt Modifications in FSW Processes	143		
	7.5.1	Double-Sided FSW Tool	143		

		7.5.2 Twin-Tool FSW Process	144
		7.5.3 Dual-Rotation FSW Process	145
		7.5.4 Friction Stir Spot Welding	146
	7.6	Recent Applications of FSW	147
	7.7	Conclusions	147
		References	148
8	Plaı	nt-Based Biosorbents for Heavy Metal Removal	
	Fro	m Wastewater	155
	Nar	madha V. and Siddhi Sreemahadevan	
	8.1	Introduction	156
	8.2	Physical and Chemical Techniques for Heavy Metal	
		Removal	157
		8.2.1 Chemical Precipitation	157
		8.2.2 Coagulation	157
		8.2.3 Membrane Separation	157
		8.2.4 Ion Exchange Method	158
		8.2.5 Adsorption	158
	8.3	Biological Methods for Heavy Metal Removal	158
		8.3.1 Phytoremediation	159
	8.4	Biochar	159
		8.4.1 Mechanism of Biochar Adsorption	160
		8.4.1.1 Precipitation	160
		8.4.1.2 Surface Complexation	160
		8.4.1.3 Ion Exchange	161
		8.4.1.4 Electrostatic Sorption	161
		8.4.2 Immobilized Biochar	161
	8.5	Plant-Based Biochar	162
		8.5.1 Biochar From <i>Eichhornia crassipes</i>	164
		8.5.2 Heavy Metal Removal Using	
		Biosorbent-Immobilized Alginate Beads	170
	8.6	A Comparison of Techniques for Removing Heavy Metals	170
	8.7	Conclusion	171
		References	171
9	Sust	tainability in Manufacturing: Welding's Role as a Frontier	177
		runkumar, N. Muthukumaran, K. S. Ramaneedharan,	
		S. Mithun, B. Sanjay, K. Solaiyappan, S. Gokul B. Arulmurugan	
		Introduction	170
	9.1		178
	9.2	Sustainability Assessment in Welding	181 181
		9.2.1 Sustainability Assessment of the SMAW Process	191

		9.2.2	Sustainability Assessment of the GTAW/TIG	
			Process	182
		9.2.3	Sustainability Assessment of the MIG/GMAW	
			Process	182
		9.2.4	Sustainability Assessment of the SAW Process	183
		9.2.5	,	184
		9.2.6	Sustainability Assessment of the Laser Beam	105
	0.0	¥47 1 1.	Welding Process	185
			ng Processes Study on Sustainability Assessment	186
	9.4		n Strategy for Sustainability Manufacturing	187
	9.5	Conch		188
		Refere	nces	190
10	Susta	ainable	Development of Redundant Articulated	
	Robo	ot Com	ponents Using Simscape Multibody	193
	<i>M</i> . <i>S</i>	aravan	a Mohan, P. S. Samuel Ratna Kumar	
	and	P. M. N	Iashinini	
	10.1	Intro	duction	194
	10.2	CAD	Modeling	200
	10.3	Assig	ning Aluminum A308 Alloy for RAR	202
	10.4	Kine	matics and Dynamic Studies	203
	10.5	Assig	ning DH Parameters	204
	10.6	Sims	cape Multibody Simulation	207
	10.7	Torq	ue Results Using Simscape Multibody	207
	10.8		Analysis Under Twisting Moment	210
		10.8.	1 Mesh Properties	210
		10.8.2	2 Postprocess of Max Stress	211
		10.8.3	3 Postprocess of Deformation	212
	10.9	Work	c Envelope of RAR	212
			ue Report of RAR	213
	10.11	Conc	lusion	216
		Refer	rences	218
11	Impl	ement	ation of Green Manufacturing Practices	
			bile Fields: A Review	221
			popathi	
	11.1		duction	222
	11.2		n Manufacturing Production	228
		11.2.	÷	228
		11.2.2	6	229
		11.2.3	11 0	229
				/

Contents xi

	11.2.4	Green M	anufacturing: Automotive Research	
		Focus	0	229
	11.2.5	Green M	anufacturing Efficiency	230
11.3	Green	Manufactu	ring in the Automobile Field	230
	11.3.1	Green M	anufacturing for Reduction of Emission	230
	11.3.2	Green M	anufacturing to Minimize Automobile	
		Waste	C C	232
	11.3.3	Green M	anufacturing: Resource Utilization	234
	11.3.4	Green M	anufacturing: Cost Minimization	235
	11.3.5	Impleme	ntation of Green Manufacturing	
		in the Au	itomobile Field	235
11.4	Green	Manufactu	ring Practices in the Automotive	
	Field			236
	11.4.1	Automot	ive Emission Control Practices	236
	11.4.2	Manufac	turing Cost Reduction Practices	237
	11.4.3	Waste Re	eduction Practices	238
	11.4.4	Resource	Utilization Practices	238
	11.4.5	ERP for (Green Manufacturing Practices	239
		11.4.5.1	Enterprise Resource Planning	239
		11.4.5.2	Supply Chain Management	239
11.5			mobile Green Manufacturing Firm	240
	11.5.1		ethodology	240
	11.5.2	-	ntation Procedures	241
		11.5.2.1	Green Procurement	242
			Environment Policies	242
			Green Design	242
			Green Manufacturing	242
			Green Utilization	242
		11.5.2.6	0 1 0	
			Employee Involvement	242
		11.5.2.7	Customers Responsiveness Program	243
		11.5.2.8	Automobile Industry Commitments	243
	11.5.3	Outcome		243
11.6		•	r Conservation Technologies	243
	11.6.1		l Factors for Implementations	243
	11.6.2			244
	11.6.3			244
	11.6.4		vn in Toilets	245
	11.6.5	Outcome	es	246
	Referen	nces		246

xii Contents

12				facturing Industry Wastes	
		•		n Sigma Principle	249
		oath Boo	*		
		Introdu			250
	12.2			Manufacturing Sector	252
	12.3	GT and		turing Development Procedure	252
		12.3.1		tion of the Present State	252
		12.3.2	0		253
			Impleme		254
		12.3.4		•	255
	12.4			ifacturing Terminologies	255
				nufacturing	255
		12.4.2		an Interactions	255
		12.4.3	Restrictio	ons of the Green Lean Approach	256
		12.4.4	Six Sigma	1	256
		12.4.5	Define-M	leasure-Analyze-Improve-Control	
) Methodology	256
		12.4.6		an Six Sigma	257
		12.4.7		and Capacity Waste	258
				Concept of Capacity	258
			12.4.7.2	Capacity Utilization: Concept	
				and Significance	259
			12.4.7.3	Estimation of Capacity Waste	259
	12.5	Real-T	ime Proble	m Formulation and Research Approach	259
		12.5.1		on Measure and Model of GLS	261
		12.5.2		an Six Sigma Framework	261
			12.5.2.1	Project Identification	261
			12.5.2.2	Assessment of the Project	262
				Root and Cause Discussion	262
				Finding Solutions	263
			12.5.2.5	Sustain the Best Solution	263
		12.5.3	Green Le	an Six Sigma Tools	263
	12.6	Green	Lean Six Si	gma Barriers	264
		12.6.1		Approaches for Barriers	264
			12.6.1.1	Identification and Clustering	
				of Barriers	264
				Classification and Prioritization	266
		12.6.2	Practical	and Theoretical Implications	267
	12.7	Conclu			267
		Referen	nces		268

Contents	xiii

13	Desig	gn for Sustainable Methods in Additive Manufacturing	271		
	Akesh B. Kakarla and Ing Kong				
	13.1	Introduction	271		
	13.2	Ecological Impacts of Additive Manufacturing	275		
		13.2.1 Materials	275		
		13.2.2 Energy Consumption	276		
	13.3	Life Cycle Analysis	277		
	13.4	Implications of Sustainable Development in AM	278		
		13.4.1 Design and Process of Product	278		
		13.4.2 Product Redesign	279		
		13.4.3 Process Redesign	279		
		13.4.4 Raw Materials	280		
		13.4.5 Transformation of By-Product Into Product	281		
		13.4.6 Closed-Loop Manufacturing	281		
	13.5	Conclusions	282		
		References	282		
14	Opti	nization of Fused Deposition Modeling Control			
	Parameters Using Hybrid Taguchi and TOPSIS Method				
	B. Sir	ıgaravel, T. Niranjan, M. Vasu Babu and K. Nagarjuna			
	14.1	Introduction	290		
	14.2	Literature Review	291		
	14.3	Experimental Setup	292		
	14.4	Methodology	296		
	14.5	Results and Discussion	300		
	14.6	Conclusions	302		
		References	302		
15	Susta	inable Machining of Monel 400 Using Cryogenic			
	Treat	ed Tool	305		
	S. Ba	lakrishnan, K. Senthilkumar			
	and S	S. Thirumalai Kumaran			
	15.1	Introduction	306		
	15.2	Materials and Methods	308		
		15.2.1 Fabrication of Workpieces	308		
		15.2.2 Taguchi Experimental Design	309		
		15.2.3 CNC Milling Operation	309		
		15.2.4 Cutter Selection	311		
	15.3	Results and Discussion	311		
	15.4	Conclusion	315		
		References	315		
Inc	lex		317		

Preface

In an era defined by rapid technological advancements and an increasing awareness of environmental sustainability, the intersection of science and industry takes on a new dimension. From within this context, we delve into the diverse and compelling world of composite materials and sustainable manufacturing. In the following chapters, we embark on a journey through the realms of innovation, exploring the pivotal role of science and technology in reshaping our industries and fostering a more sustainable future.

The chapters assembled herein are a testament to the dedication and ingenuity of researchers and professionals alike, who have tirelessly pursued groundbreaking discoveries and practical solutions to some of the most pressing challenges facing the manufacturing sector. These chapters are thoughtfully organized to highlight the profound impact of various materials, techniques, and processes on both the performance of products and the preservation of our planet.

Chapter 1 investigates the intriguing synergy between natural fibers and epoxy composites, shedding light on how filler materials can enhance mechanical properties. Chapter 2 explores the potential of sustainable reinforcements in polymer composites, demonstrating the adaptability of these materials for diverse applications. Chapter 3 uncovers the critical role that manufacturing methods play in determining the mechanical prowess of bio fiber-reinforced composites.

Chapter 4 takes us into the realm of biomedical manufacturing, where advanced composite materials are reshaping the future of medical devices. Chapter 5 underscores the importance of environmentally conscious manufacturing processes, proving that green practices can coexist with industrial production. Chapter 6 delves into the innovative world of additive manufacturing and highlights the intricacies of composite filament production.

Chapter 7 explores the delicate balance between material selection and joining techniques, with an emphasis on sustainability in the manufacturing

process. Chapter 8 introduces us to the ingenious use of natural materials in addressing environmental challenges, highlighting the significance of sustainable wastewater treatment. Chapter 9 underscores the role of welding in sustainable manufacturing practices, bridging the gap between tradition and innovation.

Chapter 10 offers a glimpse into the future of robotics, where sustainability plays a central role in engineering design. Chapter 11 provides an insightful overview of green manufacturing practices in the automotive industry, a sector undergoing profound transformation. Chapter 12 takes us on a journey toward waste reduction, demonstrating how green principles can optimize manufacturing processes.

Chapter 13 explores the synergy between design and sustainability in additive manufacturing, illustrating the potential for minimizing waste and energy consumption. Chapter 14 delves into the intricacies of process optimization in additive manufacturing, emphasizing efficiency and precision. Chapter 15 brings us to the world of precision machining, where cutting-edge technologies are transforming the way we work with materials.

It is our hope that this collection will inspire you to join the ranks of those committed to a more sustainable, efficient, and environmentally conscious future in manufacturing. Each chapter stands as a testament to the transformative power of science, technology, and the human spirit.

In closing, we extend our heartfelt appreciation to each author whose research and insights have made this book possible. Thank you for sharing your knowledge and expertise with us and with the broader community. Finally, we offer our sincere thanks to the Scrivener and Wiley publishing teams for their help with this book.

> S. Thirumalai Kumaran Tae Jo Ko December 2023