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Abstract
Eugenol (E) based mono-functional  benzoxazine(E-x) monomers were prepared using different long-chain 
monoamines(x = ba, ha, dda, oda) and fluorine substituted aromatic monoamine (x = fa). The molecular structure of the 
monomers developed was characterized by FTIR and NMR spectral analysis. Further, the prepared monomers were coated 
over the cotton fabric and studied for their surface behavior. The poly(E-dda) coated cotton fabric exhibits the higher value 
of water contact angle (WCA = 151°) than that of other samples coated with polybenzoxazines(E-ba, E-ha,E-oda, and E-fa). 
Furthermore, poly(E-dda) coated cotton fabrics also displayed the lower value of surface energy of 15.6 mN/m with a lower 
sliding angle value(11°) than those of other coated cotton fabric samples. The formation of rough surfaces on the fabric 
was ascertained from microstructure analysis and thereby contributes to superhydrophobicity along with pH robustness. 
Subsequently, the oil-water separation efficiency and flux of the poly(E-dda) coated cotton fabric was found to be 98% and 
5800 L/m2h respectively. It was also observed that the specimen of a glass substrate coated with poly(E-dda) exhibited the 
delayed ice formation. Data obtained from different studies, it is suggested that the eugenol-dodecylamine(E-dda) based 
benzoxazine can be effectively employed as an alternate to fluorine-based polymers.

Keywords  Eugenol · Polybenzoxazine · Surface morphology · Water contact angle · Oil-water separation

Introduction

Polybenzoxazines(PBz) emerging as an advance thermoset 
polymeric material with superior superhydrophobicity and 
low surface free energy [1, 2]. Polybenzoxazines also deliv-
ers low sliding contact angle (1°) and superior self-cleaning 
property[3]. Polybenzoxazines possesses several advantages 
such as ease of production, light weight and lower cost than 
that of fluoropolymers [4]. Introducing the roughness and 
lowering the surface energy are the two major routes to 
obtain superhydrophobic surfaces[5, 6]. Polybenzoxazine 

coated superhydrophobic surfaces offer a wide range of 
applications such as oil-water separation, anti-icing, and 
protecting surfaces corrosion [7, 8].

Gogoi et al. [9] during 2014 reported the PBz coated 
polyester with low surface energy behavior, and subse-
quently in the same year Tao Zhang [10] developed the 
super hydrophobic nature of PBz coated ramie fabrics. The 
oil-water separation tendency of polybenzoxazine was first 
explored by Zhong Xin et al. in 2015 [11], in which the 
oleophilictiy of PBz along with self-cleaning behavior was 
also demonstrated. Rigoberto C. Advincula et al. reported 
the anti-icing, anti-corrosive and superoleophilic behavior 
of rubber-modified PBz/SiO2nanocomposites in 2017 [12]. 
Recently, Tanet al reported the PBz/SiO2 nanocomposites 
coated cotton fabrics for oil-water separation with supe-
rhydrophobic surface (156°) [13]. All the reported stud-
ies suggest that the polybenzoxazine coated surfaces are 
customized with superhydrophobicity. However, most of 
these reports are related only with the significant behav-
ior of bisphenol-A (BPA) based polybenzoxazines, which 
has much industrial importance. Though BPA has much 
industrial importance, its practice could cause endocrine 
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disruption that might subsequently result in serious health 
issues [14, 15]. Hence, the development of non-toxic and 
environmentally friendly precursors are highly warranted 
to substitute the existing hazardous nature of materials. 
In this view, our research group have recently developed 
benzoxazines from alternate non-toxic phenol sources 
[16–18].

In the recent years, cardanol, eugenol, guiacol, 
rosin, sesamol, etc., received a significant atten-
tion from researchers to develop an environmentally 
friendly,sustainable and renewable bio-based benzoxa-
zines [14, 15, 19–22]. Eugenol is a bio-phenolic com-
pound extracted bio-sources particularly from clove oil, 
nutmeg, cinnamon, basil, and bay leaf [23]. In the molecu-
lar structure of eugenol, ortho and para positions are occu-
pied by methoxy and allyl groups respectively [24, 25]. 
Eugenol has been recently used as a non-toxic feedstock 
chemical for the preparation of benzoxazines [16, 24, 26]. 
Benzoxazine ring-opening polymerization results in the 
cross-linking preferably at ortho and para position of the 
phenolic substrate [27]. However, in the case of eugenol 
less favored meta-position is only possible, which could 
results in less cross-linking density compared to those of 
various phenol derived benzoxazines [25, 27]. This limited 
cross-link density would imparts flexibility to the resulted 
matrices. As a result, the eugenol based benzoxazines are 
chosen in the present work as an effective coating material 
for the cotton fabrics to impart hydrophobic behaviour.

Recently,cardanol–aniline based polybenzoxazine/SiO2 
modified fabric was studied for oil/water separation by 
Zhong Xin et al. in 2019 [28]. It was observed that the 
most of the previous reports, the micro roughness on the 
surfaces are created through coating polybenzoxazines 
hybrids containing SiO2,TiO2,ZnO nanoparticles [11, 12, 
28]. However, the incorporation of expensive nanoparti-
cles has limited feasibility towards industrial perspective 
commercial utility. Hence, the demand for robust, cost 
competitive and environmentally friendly polybenzo-
xazines coating without incorporation of nanoparticles is 
highly warranted.

Hence, in the present work benzoxazines based on euge-
nol and aliphatic monoamines containing different alkyl 
chain length having (4, 7, 12 and 18 carbons) were pre-
pared and characterized using different sophisticated ana-
lytical techniques .The aliphatic chain moiety could favor 
hydrophobic behavior due to their non-polar nature [29]. 
The prepared benzoxazines were coated over cotton fabric 
and glass substrates. The surface morphology, water contact 
angle and oil-water separation behaviour of the cotton fabric 
coated with polybenzoxazines are studied and the results 
obtained are discussed in detail and reported. In addition, the 
anti-icing property of the glass surfaces coated with eugenol 
based polybenzoxazines are also explored and reported.

Experimental

Chemicals

Eugenol was obtained from Loba chemie laboratory chemi-
cals and reagents, India. Butylamine (ba), heptylamine (ha), 
dodecylamine (dda), octadecylamine (oda), and 4-fluoro-
aniline (fa) were obtained from Sigma Alrich, India. Tet-
rahydrafuron, chloroform, paraformaldehyde, dioxane, and 
sodium hydroxide were obtained from Qualigens, India. 
Cotton fabric was procured from textile industry in Erode, 
Tamilnadu, India. Glass slides with dimension of 2 × 1 cm 
was collected from local stores, coimbatore, India.

Synthesis of Eugenol Based Benzoxazine Monomer 
(E‑ba, E‑ha, E‑dda, E‑oda, and E‑fa)

The preparation of monofunctional benzoxazine monomers 
with long chain aliphatic amines and fluorine substituted 
aromatic amine are presented in Scheme 1. In detail, eugenol 
(5 g, 30.4 mmol) dissolved in 1,4-dioxane (8 mL), respective 
amines namely butylamine [(ba) 2.22 g, 30.4 mmol] or hep-
tylamine [(ha) 3.50 g, 30.4 mmol] or dodecylamine [(dda) 
5.63 g, 30.4 m mol], or octadecylamine [(oda) 8.20 g, 30.4 
mmol], or fluoroaniline [(fa) 3.38 g, 30.4 mmol] were added 
along with the addition of paraformaldehyde in two equiva-
lents separately reacted at 60 °C. Then the temperature of 
the reaction was slowly raised to 110 °C, allowed to reflux 
and stirred constantly for 12 h.Meantime, the progress of 
the reaction was monitored by TLC. After the completion of 
the reaction, the reaction products were cooled, quenched in 
water and extracted using ethylacetate. The unreacted euge-
nol was removed by adding 1 M NaOH to the organic layer. 
Subsequently, the organic layer was dried over anhydrous 
sodium sulphate and evaporated under vacuum. The ben-
zoxazine monomers synthesized are named as E-ba, E-ha, 
E-dda, E-oda and E-fa by following the IUPAC nomencla-
ture. After ascertaining for their structural confirmation from 
FTIR and NMR spectra, the prepared monomers were coated 
over cotton fabric as described subsequently.

Preparation of Benzoxazines Coated Cotton Fabric 
and Glass Surfaces

Cotton fabric was washed with distilled water and soaked 
in 2 M NaOH solution for 3 h to remove the waxy material 
and activate the surface. Later, the fabric was washed with 
distilled water and kept drying at 60 °C for 10 h. Then, the 
obtained cotton fabric was coated with different benzoxa-
zines to modify the surface. Exactly 1 g of each benzoxa-
zines monomer is allowed to dissolve separately in 10 mL 
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of THF. To the separate solutions containing benzoxazines, 
the two piece of cotton fabrics were immersed for 20 min 
and subsequently cured at 180 °C for 5 min. The pristine 
cotton without polybenzoxazine also studied for comparison. 
For coating the glass substrate, the surface was cleaned in 
piranha solution followed by drying in a vacuum oven at 
110 °C for 30 min. The solution containg 0.5 g of benzoxa-
zines dissolved in THF were then the drop casted over the 
pre-cleaned glass (piranha etched) and cured for 1 h in hot 
air oven.

Characterisation

FTIR spectra measurements were carried out in Agilent 
Cary 630 FTIR Spectrometer. NMR spectra were recorded 
in Bruker (400 MHz) using deuterated chloroform (CDCl3) 
solvent and tetramethylsilane (TMS) as an internal stand-
ard. The curing behavior of the E-x benzoxazine mon-
omers was determined using NETZSCH STA 449F3 
Jupiter-German from room temperature to 300 °C.The 
morphology of the polybenzoxazine coated fabrics is ana-
lysed from an FEI QUANTA 200F high-resolution scan-
ning electron microscope (HRSEM). The water contact 
angle measurements of the coated fabrics were conducted 

on a Data physics instrument (OCA 15, Germany) using 
a water drop (V = 10 µL). The oil-water separation is per-
formed in filtration assembly without the aid of pressure 
using cotton fabrics of 2.5 cm diameter and 50% v/v of the 
oil-water mixtures (petrol/water, diesel/water, and engine 
oil/water).Separation efficiency (%) and flux were calcu-
lated using Eqs. 1 and 2. The cyclic test was conducted for 
10 cycles using petrol/water mixture.

Anti-icing performances of the eugenol based polybenzoxa-
zines were analyzed after coating over glass surfaces. The 
polybenzoxazines coated glass surfaces were subjected at 
− 5° C for 24 h. Later, 20 µL of water was dropped on the 
glass surfaces containing eugenol based polybenzoxazines. 
The process of ice formation over the surfaces was recorded 
using a digital camera for every 10 min and the results were 
analysed and compared in order to evaluate the anti-icing 
behavior.

(1)

Separation efficiency (%) =
Volume of the oil after separation

Volume of the oil before separation
× 100

(2)

Flux =
Volume of the permeated oil(L)

Area of the fabric
(

m2
)

× Time for separation(h)

Scheme 1   Preparation of 
eugenol benzoxazines using and 
different monoamines
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Results and Discussion

Spectral Analysis

To validate the structures of the prepared benzoxazines 
(E-ba, E-ha, E-dda, E-oda and E-fa), spectral analysis such 
as FTIR and NMR were carried out. Figure 1 shows the 
FT-IR spectra of the benzoxazine monomers. Typically, 
bands appeared at 2915 and 2840 cm− 1 were assigned as 
asymmetric and symmetric stretching vibrations respec-
tively, representing the methylene groups (–CH2–) of alkyl 
side chains of the ba, ha,dda and oda moieties [30, 31]. 
With an increase in the alkyl chain length, the vibration 
band also became stronger and confirms their presence. 
These stretching bands are not observed in the case of E-fa 
benzoxazine, due to the presence of aryl ring of 4-fluoro-
aniline.The broad bands appeared between 1242 and 
1190 cm− 1 were attributed to the asymmetric stretching 
vibrations of C–O–C groups present in the benzoxazines 
monomer [32]. Further, the band appeared at 1142 cm− 1 
corresponds to the symmetric vibration of C–O–C groups 
present in the benzoxazines monomer[32]. The appear-
ance of the sharp band at 1501 cm− 1 corresponds to tri-
substituted benzene rings of eugenol moiety. Further, the 
appearance of a peak at 912 cm− 1, confirms the formation 
of benzoxazine monomers [2, 33].

The  1H-NMR analysis was carried out to confirm 
the molecular structure of benzoxazine monomers. Fig-
ure 2a–e shows the 1H-NMR spectra of E-ba, E-ha, E-dda, 
E-oda and E-fa benzoxazine monomers. The formation of 

oxazine ring was confirmed by the presence of two singlets 
of methylene protons corresponding to (–O–CH2–N–) and 
–N–CH2–Ar). With respect to the nature of precursors, 
the peak positions corresponding to (–O–CH2–N–) and 
–N–CH2–Ar) methylene signals could undergo minor 
shifts [34–36]. The aryl amine condensed oxazine ring 
gives signal at downfield region, whereas that of aliphatic 
amine based oxazine ring gives signal at upfield region.

In the case of eugenol and aliphatic monoamine based 
benzoxazines [E-ba, E-ha, E-dda and E-oda], the two sin-
glets from the methylene protons of oxazine ring show sig-
nals at δ 3.8 and δ 4.8 ppm (Fig. 2a–d) in 1H-NMR spectra. 
The signal representing terminal methyl protons of ba, ha, 
dda and oda moieties appears at δ 0.9 ppm [33]. The major 
signals that appeared in between δ 1.0 and 2.0 ppm corre-
spond to the aliphatic chain protons of ba, ha, dda and oda 
moieties. The singlet appeared at δ 2.8 ppm corresponds to 
N-CH2- protons of ba, ha, oda and dda [18]. In the case of 
E-fa, the two singlets from the methylene protons of the oxa-
zine ring appeared at 4.5 and 5.5 ppm (Fig. 2e) in 1H-NMR 
spectra. The multiplet signals around δ 6.5–7.2 corresponds 
to the aryl rings. The signal appeared at δ 3.2 (Fig. 2a–e) 
corresponds to the methylene proton (=CH–CH2–Ar)of 
eugenol that present in between the terminal alkene carbon 
and aromatic ring. The terminal protons from the ethene 
chain of eugenol moiety appeared at δ 5.0 ppm (Fig. 2a–e).

Analysis of Curing Behaviour of Benzoxazines

The curing process of eugenol monomers were analyzed 
using differential scanning calorimeter  (DSC). Figure 3 

Fig. 1   FTIR Spectra of eugenol 
benzoxazine monomers
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presents the DSC thermograms of eugenol based benzoxa-
zines from room temperature to 300 °C. In Fig. 3, the appear-
ance of broad endothermic peaks indicates the occurrence 
of either softening or melting process. It is interesting to 
note that the melting/softening process is highly influenced 
by the amine chain length. As the chain length of the amine 
increases, the temperature corresponding to the endothermic 
nature was decreased [37, 38]. Thus, the E-dda and E-oda 
with long aliphatic chain shows broad endothermic peaks 

comparatively below 150 °C, whereas that of E-ba and E-ha 
monomers with shorter chain length delivers endothermic 
peaks nearly around 240 °C.

Similarly, the peak maxima of broad exothermic peaks 
(Tp) associated with the ring-opening polymerization of 
benzoxazine monomers are also influenced by the change 
in the aliphatic chain length of of the monomers (Fig. 3). 
The monomer prepared using butylamine requires higher 
temperature for polymerization (Tp = 261 °C) than that of 

Fig. 2   1H-NMR spectra of eugenol based benzoxazine monomers
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others. Subsequently, the other benzoxazine monomers pre-
pared by aliphatic amines with seven, twelve and eighteen 
carbon alkyl chain namely E-ha, E-dda and E-oda possess 
the Tp at 245 °C, 215 and 227 °C respectively. This phenom-
enon could be attributed to various factors such as molecular 
structure, flexibility, and the concentration of reactive func-
tional groups. As the chain length increases, the molecular 
size also increases,which in turn decreases the reactivity. 
However, the flexibility and mobility of monomers get 
increased with an increase in aliphatic chain length, which 
allows the occurrence of softening and facilitates the ease of 
ring-opening reaction at lower temperatures. The value of Tp 
was found to be decreased with an increase in the aliphatic 
chain of amines. However, the eugenol monomer prepared 
using octadecyl amine (18 carbon) shows slightly increased 
Tp(227 °C) than that of monomer prepared from dodcely 

amine(12 carbon). This might be attributed to the cause of 
steric effect, as noticed in the case of linear aliphatic amine-
based benzoxazines [39–43]. On the other hand, the E-fa 
monomer shows Tp at 227 °C. Moreover, the aliphatic amine 
condensed benzoxazine monomers release comparatively 
lower enthalpy than that of aromatic based monomer.

Curing Analysis of the Coated Fabrics

Figure 4 represents the FTIR spectra of the eugenol based 
benzoxazines coated cotton fabrics. For comparison, the 
FTIR spectrum of pristine cotton fabric is also provided in 
the supporting information (Fig. S1). For pristine cotton fab-
ric, the peaks appeared at 1712 and 1246 cm− 1 correspond 
to the carboxylic acid functional group and C-O-C link-
age respectively. Since the fabric was treated with sodium 
hydroxide, the primary hydroxyl groups might have been 
oxidized to the carboxylic group [29]. After coating with 
benzoxazines, the fabrics were cured at 180 °C and subjected 
to FTIR analysis. In Fig. 4, the absence of peak at 912 cm− 1 
represents that the respective benzoxazine monomers have 
undergone ring-opening polymerization over cotton fabrics 
[29]. The peaks observed at 2919 and 2846 cm− 1 correspond 
to the asymmetric and symmetric stretching vibrations of 
a methylene group (–CH2–) respectively, arised due to the 
presence of long alkyl side chains [29].

Water Contact Angle (WCA) and Surface Free Energy

To study the water repellent characteristic of the fabrics, 
the values of water contact angle (WCA) are measured and 
are presented in Fig. 5. The WCA values of poly(E-ba), 

Fig. 3   DSC thermograms of eugenol based benzoxazine monomers

Fig. 4   FTIR spectra of eugenol 
based benzoxazines coated cot-
ton fabrics
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poly(E-ha), poly(E-dda), poly(E-oda) and poly(E-fa) 
coated cotton fabrics are 118°, 132°, 151°, 136° and 140° 
respectively. Compartively, the values of WCA of the fabric 
coated with poly(E-dda) was found to be higher (151 °C) 
(Fig. 5) than those of other samples. This infers that the 
optimum aliphatic chain length required to achieve super-
hydrophobicity using bio-based eugenol benzoxazine with 
dodecylamine (12 Carbon atoms). Earlier, the values of 
higher contact angle was achieved with stearic acid pos-
sessing higher packing density. The superhydrophobic 
nature was also achieved using stearic acid through the 
well-ordered self-assembly of carbon chains in an upright 
position [44]. However, cotton fabric coated with eugenol-
benzoxazine prepared with octadecylamine(18 C) shows 
lower contact angle value than that of dodecyl aliphatic 
amine (12Cs). This might be due to steric hindrance, which 

could altered the molecular orientation and thereby results 
in a lower value of WCA. In order to validate the role of 
precursors (eugenol and dodecylamine), the eugenol was 
replaced by phenol and corresponding phenol-dodecylamine 
benzoxazine (P-dda) was studied (Fig. S2, 1H-NMR). Fur-
ther, the phenol-dodecylamine benzoxazine (P-dda) coated 
cotton fabric shows WCA value of 142° (Fig. S3). Finally, 
the cotton fabric coated with fluoro-aniline based eugenol 
benzoxazine also shows the lower value of WCA (140°) than 
that of the poly(E-dda) coated cotton fabric (151°). These 
results infer that the synergistic contribution of eugenol and 
dodecylamine precursors towards superhydrophobicity than 
that of fluoro-aniline based benzoxazine [(poly(E-fa)].

Data obtained from WCA studies infer that the alkyl 
chains attached to the polybenzoxazines play a significant 
role in influencing the surface properties of the coated cot-
ton fabrics. In general, hydrophobic substrates usually pos-
sess the lower values of surface free energy. It is already 
ascertained that the polybenzoxazines are low surface 
energy materials with inherent hydrophobicity [45]. Hence 
it is highly desirable to evaluate the surface free energy of 
the cotton fabric coated with eugenol based benzoxazines. 
The values of surface free energy of the fabrics are calcu-
lated using the equation of state and are presented in Fig. 6. 
The value of the surface free energy of pristine cotton fab-
ric was found to be 26.2 mN/m using water. The values 
of surface free energy observed using water for the cotton 
fabrics coated with poly(E-ba), poly(E-ha), poly(E-dda), 
poly(E-oda) and poly(E-fa) are 20.3, 17.0, 15.6, 17.8, and 
17.6mN/m respectively. From the results obtained for dif-
ferent benzoxazines coated samples, the surface free energy 
of poly(E-dda) coated fabric was significantly lower (15.6 
mN/m) than that of other benzoxazine coated cotton fabrics. 
This value is even lower than the value reported for Teflon 
[4, 46].

It is well known that the oils have lower surface tension 
ranging from 20 to 30 mN/m2. Hence, it is highly desir-
able to predict the surface free energy of material using oil 

Fig. 5   Water contact angle 
images of eugenol-based 
polybenzoxazines coated cotton 
fabrics

Fig. 6   Surface free energy of eugenol-benzoxazine coated cotton fab-
rics with water and diesel



2451Journal of Polymers and the Environment (2020) 28:2444–2456	

1 3

to ascertains their utility in oil-water separation. The sur-
face free energy of pristine cotton fabric was observed to be 
10.7mN/m using diesel, where as the surface free energies 
of cotton fabrics coated with poly(E-ba), poly(E-ha), poly(E-
dda), poly(E-oda) and poly(E-fa) are 24.6, 26.0, 27.7, 26.5, 
and 27.6 mN/m respectively. These results suggest that the 
value of surface free energies of cotton fabrics coated with 
polybenzoxazines have almost equivalent to that of diesel 
oil, which has the value of 25.8mN/m [44]. Hence, it is sug-
gested that the benzoxazine coated cotton fabrics developed 
in the present work can be used as cost-competitive sus-
tainable filtration material for oil-water separation applica-
tion similar to the other coating materials reported earlier 
[47–49].

Morphology of the Fabrics

The morphology of eugenol based benzoxazines coated cot-
ton fabric was investigated using field emission scanning 
electron microscope (FE-SEM) and the results obtained are 
presented in Fig. 7 in comparison with pristine cotton fabric. 
The morphology of eugenol based benzoxazines coated cot-
ton fabrics, show rough and asperity textured surfaces. The 
surface roughness was closely observed to increase with the 
increase in the length of carbon chain of the benzoxazines. 
Thus, poly(E-oda) coated cotton fabric shows more rough-
ness due to the cluster of the long-chain moiety of octade-
cyl chain. It is well known that the formation hierarchically 
rough dual scale structured surface plays an important role 
to enhance the water-repelling behavior [50]. Thus, the for-
mation of the rough surface aided by the coating of eugenol 

based benzoxazines contributed to an enhanced values of 
water contact angle. The polybenzoxazines coated cotton 
fabric surfaces possess protuberances and air beneath tex-
tured surfaces over the fabric, which in turn stack the water 
droplet to be sited on the top without contacting the fabric 
surfaces [50]. Thus, the reduced interfacial interaction influ-
ences the Cassie-Baxter state of attraction between the fabric 
surface and water drop. This behavior contributes to supe-
rhydrophobic behaviour due to the strong intra-molecular 
hydrogen bonding resulted between polybenzoxazine and 
cotton fabric. Further, the water repellent behavior imparted 
by the long alkyl chains is similar to the trichlorosilane with 
different alkyl (methyl, propyl, octyl, dodecyl, octadecyl) 
chain [51]. It is important to note that eugenol based long-
chain benzoxazines prepared in the present work are cost-
effective when compared with those of long-chain silane and 
fluorine derivatives [51].

Oil‑Water Separation

Further, the oil-water separation efficiency was measured for 
the poly(E-dda)/cotton fabric (Fig. 8a), because of its higher 
contact angle value and lower surface free energy. Three 
different types of oil-water mixtures were prepared using 
an equal volume of water and petroleum derivatives such as 
engine oil (20W40 grade with a density of 0.85 kg/L), diesel 
and petrol. Due to the high density of water, the oil layer 
exists upper. To bring up the water layer above, high-density 
dichloromethane (DCM) (d = 1.33 g/cm3)(50 ml) was added, 
which dissolves the petrol and brings down. Further, the 
extra volume of water was added to maintain the ratio of 

Fig. 7   FESEM images of a poly(E-ba)/cotton, b poly(E-ha)/cotton, c poly(E-dda)/cotton, d poly(E-oda)/cotton, e poly(E-fa)/cotton and f pristine 
cotton fabric
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water and DCM (Fig. S4a). Once, the petrol present in DCM 
meet the polybenzoxazine coated cotton fabrics, the oil starts 
to penetrate immediately and collected in the filtration flask 
through gravity (Fig. S4b). After the complete removal of 
the oil layer, the water layer is expelled and stayed over the 
fabrics which indicate the superhydrophobic and low surface 
free energy nature of poly(E-dda) coated cotton fabric (Fig. 
S4c).

Among the different types of the oil-water mixture 
studied, the higher separation efficiency of about 98% was 
observed for petrol-water than that of diesel-water and 
engine oil-water mixtures. This infers that the poly(E-dda)/
cotton fabric can suit the separation of a wide range of indus-
trial oils. Further, the flux behavior was calculated using 
Eq. 2, for the poly(E-dda) coated cotton fabric to ascertain 
the commercial viability of polybenzoxazines coated cotton 
fabrics with petrol-water mixture. Initally, the flux value for 
poly(E-dda) coated cotton fabric placed on the sintered disc 
of separting flask shows only 680 L/m2h (Fig. S5). How-
ever, flux value of poly(E-dda) coated cotton without support 
of sintered disc was observed to be 5800 L/m2h (Fig. 8b). 
Upon subsequent cycles, the flux value reduces and becomes 
5100 L/m2h after 10 cycles. This results infer that the highly 
desired separation was performed in absence of sintered disc 
(Fig. S6). The superoleophilic property of poly(E-dda)/cot-
ton fabric facilitate rapid penetration of petrol. The observed 
results are consistent with thesuperhydrophobic membrane 
prepared from polycaprolactone and beeswax, which also 
shows 98% separation [52]. Beeswax contains long-chain 
methylene [–(CH2)–] carbons, which is responsible for the 
superhydrophobic nature.

In addition to water, the contact angle behavior of poly(E-
dda) coated cotton fabric in different pH medium (pH 1–14) 
was performed. The observed results of WCA behavior are 
presented in Fig. 9a. The consistency in the WCA values of Fig. 8   a Oil water separation efficiency (%) and b flux (L/m2h) of the 

poly(E-dda) coated fabric at different cycles

Fig. 9   a Contact angle behaviour of poly(E-dda) coated fabric at different pH and b showing hydrophobic nature against variety of natural 
extracts
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poly(E-dda) coated cotton fabric at different pH suggests 
that the coated fabric possesses the resistance to both acid 
and alkali conditions. Further, the value of water sliding 
angle (WSA) for poly(E-dda) was also determined and found 
to be 11°. Figure 9b shows superior hydrophobic behavior 
against a wide variety of liquids. In order to find the surface 
topology of the fabrics, AFM analysis was performed for 
both pristine and poly(E-dda) coated fabrics. The 3D image 
resulted from AFM analysis for both pristine and poly(E-
dda) coated cotton fabrics are presented in Fig. 10. The 
pristine fabric shows average roughness (Ra) as 10.84 nm 
(Fig. 10a), whereas that of the fabric coated with poly(E-
dda) was found to be about 34.40 nm (Fig. 10b). The results 
from AFM studies suggest that the surface roughness of the 
cotton fabric increased after coating with poly(E-dda). Thus, 
the robust poly(E-dda) coated cotton fabric can be used in 
oil/water separation of different environments.

Anti‑Icing Behaviour

To study the anti-icing performance, glass surfaces were 
coated and cured with prepared benzoxazines and subseqe-
untly exposed in refrigeration under − 5 °C. For reference, 
the glass surface without coating was also exposed. All the 
glass substrates were kept in the freezer for 24 h before anti-
icing tests. At such a cooling state, a water droplet of 20 µL 
was added over all the surfaces to evaluate the anti-icing 
behavior. The surfaces of the water droplet on a glass surface 
show transparent ellipsoid shape (Fig. 11). Further, the anti-
icing performances on the glass surfaces were monitored 
through the evolution of water droplets at a regular interval 
of 10 min duration. After subjected for 20 min, the trans-
parency of the water droplet were starts to lose due to the 
crystallization. However, poly(E-dda) and poly(E-fa) coated 
surfaces don’t facilitate the crystallization of water on the 
surfaces upto 20 min. After 40 min, the water droplets on 
surfaces gradually shrunk because of the sublimation of ice 

bulk and the vaporization of water droplets. However, the 
water droplet on the surface of poly(E-dda) coated substrate 
still shows transparency. After 60 min the uncoated glass 
surfaces and polybenzoxazines coated glass surfaces tend to 
show the transformation of water droplet into a frozen state 
excluding the poly(E-dda) coated surface. The poly(E-dda) 
superhydrophobic surfaces on glass substrate thus exhibit 
a better anti-icing property than that of other benzoxazines 
coated surfaces. In the sub-zero environment, heterogeneous 
nucleation mainly occurs near the liquid-solid interfaces and 
free energy barrier (ΔG). According to nucleation theory, 
the surface with a higher contact angle leads to a larger ΔG 
and a smaller nucleation rate [53]. Also, the formation of 
Cassie’s state between the rough surfaces and water drop i.e., 
the existence of trapped air pockets at the solid-liquid inter-
faces reduces the heat transfer during the cooling process 
[54]. As a result, the poly(E-dda) coated glass possesses the 
highest water contact angle (Fig. S7) due to the formation 
of enhanced intermolecular hydrogen bonding led to protu-
berance. Thus, the air beneath the protuberance avoids the 
contact between the water and surface, which in turn delays 
the formation of the ice.

Conclusions

The superhydrophobic/superoleophilic cotton fabric was 
developed using eugenol based benzoxazine monomers. To 
develop nanostructure roughness over the cotton surface, the 
eugenol based benzoxazines were prepared along with differ-
ent types of monoamines. The eugenol based benzoxazines 
developed in the present work displayed a varied morphol-
ogy when coated over cotton fabrics. Among the benzoxa-
zine coated cotton fabrics, the eugenol-dodecylamine(E-dda) 
based benzoxazine coated fabric exhibits the highest water 
contact angle (151°) and lowest surface free energy. The 
morphology observed in the SEM images infer the formation 

Fig. 10   AFM topography images of a pristine fabric, b poly(E-dda)/cotton fabric
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of roughness brought by polybenzoxazine coatings, which 
in turn contributes to superhydrophobicity. Finally, among 
the benzoxazines coated cotton fabrics, the poly(E-dda) 
delivers better oil-water separation efficiency (98%) with 
greater cyclic repeatability and anti-icing behavior. Thus, 
the poly(E-dda) prepared in the present study can be used 
as an effective hydrophobic/oleophilic material for oil-water 
separation and anti-icing applications.
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