
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/347269334

A Survey on Python Libraries Used for Social Media Content Scraping

Conference Paper · September 2020

DOI: 10.1109/ICOSEC49089.2020.9215357

CITATIONS

21
READS

556

3 authors:

Thivaharan Sakthivadivel

PSG Institute of Technology and Applied Research

21 PUBLICATIONS   40 CITATIONS   

SEE PROFILE

Srivatsun Gopalakrishnan

PSG College of Technology

19 PUBLICATIONS   130 CITATIONS   

SEE PROFILE

S. Sarathambekai

PSG College of Technology

30 PUBLICATIONS   146 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Thivaharan Sakthivadivel on 06 July 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/347269334_A_Survey_on_Python_Libraries_Used_for_Social_Media_Content_Scraping?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/347269334_A_Survey_on_Python_Libraries_Used_for_Social_Media_Content_Scraping?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thivaharan-Sakthivadivel?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thivaharan-Sakthivadivel?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/PSG-Institute-of-Technology-and-Applied-Research?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thivaharan-Sakthivadivel?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Srivatsun-Gopalakrishnan?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Srivatsun-Gopalakrishnan?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/PSG_College_of_Technology?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Srivatsun-Gopalakrishnan?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/S-Sarathambekai?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/S-Sarathambekai?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/PSG_College_of_Technology?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/S-Sarathambekai?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Thivaharan-Sakthivadivel?enrichId=rgreq-59d7fd8f74680b10cfbc71f201240d77-XXX&enrichSource=Y292ZXJQYWdlOzM0NzI2OTMzNDtBUzoxMDQyNDI2ODY1MTM1NjE2QDE2MjU1NDUzNDA2NjQ%3D&el=1_x_10&_esc=publicationCoverPdf


A Survey on Python Libraries Used for Social 
Media Content Scraping 

 
Thivaharan. S

 

Asst. Prof (Sel. Grade) 

CSE Department  

PSG Institute of Technology and Applied 

Research 

 Coimbatore 

Srivatsun. G
 

Associate Professor 

ECE Department 

PSG College of Technology 

Coimbatore 

Sarathambekai.S
 

Asst. Prof (Sel. Grade)  

IT department  

PSG College of Technology 

Coimbatore 

 
Abstract - Python has a rich set of libraries available for 
extracting the digital contents that are spread across the 
internet. Among the available libraries, the following 
three libraries are popularly deployed for the purpose: 
they are BeautifulSoup, LXml and RegEx. A statistical 
study carried out over the scattered available data set 
shows that RegEx is capable of delivering the answer on 
an average of 153.7 ms. Still, RegEx has the inherent 
drawback of having limited rule extraction when it 
comes for the web page with more inner tags. Because 
of this demerit RegEx is termed as capable of 
performing only moderately complex contexts. 
Nevertheless the other libraries BeautifulS oup and 
LXml are capable of extracting web content under 
critical environment yielding the response rate of 458.68 
ms and 202.96 ms respectively. Also, these two libraries 
are based on the DOM model proving to be the scalable 
libraries. The modern content grading system [1] 
specifically developed for the regional languages 
available in social media are mostly influenced by the 
web scrappers. This survey justifies the overwhelming 
performance of RegEx under differing scenarios. 

Keywords: Hypertext Markup Language (HTML), 
Document Object Model (DOM), Digital content Scraping  

I. INTRODUCTION 

A recent study shows that the internet is constantly 

thronged with multifold of data. Among them, the 

social media platforms contribute to the majority of 

these data. Always it is a concern for the researchers 

contents. To evade this, a technique 

called web scraping [2] is deployed to pull out the 

content of interest from the digital platform. Web 

scraping also takes in to account the data that are 

shared in real-time by means of chatting and live 

streaming [3]. In this article, it is carefully analyzed, 

how the digital content is pulled-out from the digital 

platforms. Python along with its rich set of utility 

libraries is considered for the survey in web scraping. 

The technique of Web scraping is derived from the 

following three models and is evolving over time: 

DOM (Document Object Model) [4], Java API 

Wrapper based Methods [5] and SVM based 

classifiers [6]. Java API based wrappers are the actual 

programs written from scratch for content 

segregation. DOM is the model, as well as the 

architecture consisting of the utility structures, 

sophisticated tags and the contributing attributes of 

the HyperText Markup Language (HTML). Support 

Vector Machine (SVM) based models have vastly 

available algorithms in the form of API for 

classification even in n -dimensional paradigms.  

In this article, a detailed analysis is made by keeping 

the following as the metrics for evaluation: a minimal 

gap in classification, Minimum response time and 

less processing cycle consumption. In this article the 

purpose of web scraping is compared and correlated 

among the RegEx, BeautifulSoup [7] and LXml [8], 

where the later two are derived from the DOM 

architecture and are scalable. The distant vector 

metric machine learning approach [9] with the 

capability of n-dimensional space parameter 

classification for the above-mentioned metrics yields 

and assigns a maximal proportionate ratio to the 

single parameter classification considering the 

response time alone.  

II. WEB SCRAPING STAGES IN THE DOM 

ARCHITECTURE 

The Modern DOM models even have the capability 

of producing the alternate trees based on the 

thesaurus or lexicon. The familiar DOM tags in mark 

up languages are <h1>, <div>, <Span> and the 

associated classes of the <Span> tag. A rubric 

developed for a web page is reusable in the sense it 

can be effectively applied for the subsequent web 

pages as well if they share the same semantics.  

The relationship between HTML tags and DOM 

architecture based debuggers is shown in figure1 

(Source: Mozilla Firefox 79.0  32 bit / Debugger 

console). 

Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC 2020)
DVD Part Number: CFP20V90-DVD; ISBN: 978-1-7281-5460-2

978-1-7281-5461-9/20/$31.00 ©2020 IEEE 363



 

Fig 1: Web Browser with Debugger mode enabled (mapping DOM and Tag)  

III. CONTENT EXTRACTION USING PYTHON 

LIBRARIES 

In this article, the following three aspects of social 

media content extraction are taken in to account: 

Regular Expression, BeautifulSoup and LXml. 

Content extractions are executed on the web pages 

with the matching pattern. Once the extraction phase 

is over, the matching pattern along with the 

operational metadata are recorded in the dataset 

either as a new entry or as an updated entry in the 

existing dataset.  

A. Regular Expression 

Regular Expressions are (sometimes referred to as 

RegEx[10]) the pattern that needs to be searched in 

the digital content of interest. In python, a library 

matching task.  

The following is the code to perform the extraction in 

the <h2> tag along with its class name. The digital 

data can be pulled out from the markup language 

either by applying it over the whole document or the 

partly available content. The partly available content 

is called as the privileged content.  

def pattern_match(str): 

return str.replace(  

) .

 

def separate_element(input): 

 

In the above code, two functions namely 

for web scraping. Each of the functions accepts a 

parameter. The separate_element() function accepts 

an input from the user normally a patter to be parsed 

in the digital content. This parameter is then passed 

to another function pattern_match(), which uses the 

method replace() to find out the pattern. Once the 

pattern is found out the result is then forwarded to the 

code written below for grouping the records of the 

findings. 

def group(DOC, str): 

answer = re.search(pattern_match(str), 

DOC, re.DOTALL)) 

  

if answer: 

  return answer.group(1) 

 else: 

   

B. BeautifulSoup 

BeautifulSoup is an open-source library provided 

along with python. It has the default architecture 

binding capability with that of DOM. This library 

operates in the following stages to perform web 

scraping.  

Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC 2020)
DVD Part Number: CFP20V90-DVD; ISBN: 978-1-7281-5460-2

978-1-7281-5461-9/20/$31.00 ©2020 IEEE 364



The first stage collects the list of repositories [11] 

-repositories-

property focuses on the div components and its 

location is marked along with its binding and spread 

in the entire document of interest. 

In the second stage, the relevant information of each 

of the DOM components scrapped in the first stage is 

taken for investigation. Relevance information 12] 

in turn is a list that is getting populated dynamically. 

The list segregates the sections as it appears in the 

relevance DOM model. 

 

In the third stage, the location-specific information of 

the repository and the associated links are stored. The 

associated links are referred to in the mark-up 

language using the <href> tag. 

 

The fourth stage prepares a documented repository 

description 13], thereby makes the further pattern 

matching easy and is reusable. 

 

The fifth stage encodes the scrapped digital contents 

with a specific language. The following code 

demonstrates all these stages concisely. 

 

def scrap_all(DOC, str, BS): 

 ANS = BeautifulSoup(DOC, BS) 

 Soup.find_all(res.append(res.decod

 

 For item in ANS: 

 Tag = tag + ANS.append(format( )) 

Return Tag 

 

from bs4 import BeautifulSoup 

 

def Init_BS(DOC, Parser): 

soup = BeautifulSoup(page.content, 

'html.parser') 

for item in list(soup.children) 

Tag = Tag + list(soup.children)[2] 

   return Tag 

 

accepts three parameters namely document to be 

parsed, the pattern to be looked after and the type of 

RegEx extension. The first line in the function 

initiates the document extraction using the 

BeautifulSoup() constructor using the default 

parameters. 

 

 After initialization, a search_all() method is called 

alongside of the soup property. The answers are 

stored in a default buffer unless and until specified 

explicitly. From the buffer, iteratively the tag 

component is getting updated. Finally, the updated 

tag component is returned.  

C. Lxml 

Lxml is a stand-alone content scraping library which 

looks the document of interest as a chunk. Chunking 

is the mechanism used for linking the stranded 

associations in the digital content. Chunking is a 

novel approach used for identifying the weakly 

linked and strongly linked components. This makes 

the extraction process simple when the document is 

of highly inward in nature. Inward document 

normally contains multiple recursive links making 

the other parsers to stammer a lot in the extraction 

process. Xpath[14]  is a content extraction tree, 

which is found to be useful in the Lxml parsing.  

 

should be imported from the Lxml package. StringIO 

is another module to be imported for the process. The 

first step is to initialize the Xpath process. Once 

Xpath succeeds the actual extraction is started. The 

following depicts the Lxml way of scraping. 

 

def Init_Xpath(str, tagname):  

   base = etree.fromstri  

  

 for item in base.keys(): 

   

 return tag 

 

The above code accepts two arguments and populates 

the base dictionary though the etree module and the 

method fromstring(). Iterative the pattern is instated 

upon the tag and the same is returned after the 

exhaustion of the loop.  

 

from Lxml import etree 

 

def scrap_all(DOC, str): 

 base = etree.parse(io.stringio(DOC), LX)  

 temp = Xpath(str) 

 for item in temp: 

lst1.append(etree.tostring(item, 

 

 return lst1 

 

The above imports the etree module. The function 

scrap_all() generates the parse tree and the same is 

searched using the Xpath. The results are stored in 

the list called lst.  

 
IV. COMPARISON AND CORRELATION OF THE 

PYTHON LIBRARIES 

All the above codes which are intended for the same 

purpose is executed in the presence of time.clock() 

method. The outcome is documented and is taken for 

the analysis. This method returns the floating point as 

Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC 2020)
DVD Part Number: CFP20V90-DVD; ISBN: 978-1-7281-5460-2

978-1-7281-5461-9/20/$31.00 ©2020 IEEE 365



the outcome. This is a win32 method based on 

QueryPerformanceCounter [15]. 

 

A database and a referral document are made 

available in the offline status. The document is 

chosen such that it consists of average to medium 

patterns. The result is summarized below for each of 

the scrapping libraries. 

 

Quantitative characteristics of the Input workspace: 

Total number of words: 15,026 

Complexity of the document: Average, Best and 

worst case complexity 

 

Table 1 shows the metric and their proportionate 

weights in the evaluation of the response time 

considering the document complexity ranging from 

worst to best case. 

 

 

TABLE 1  proportionate Metric & weights 

 

Document 
Complexity

/Metric 
Type of 
parsers 

Initializer
s 

Scrappin
g method 

Weight
s 

Worst case     0.05556 

Average 
case     0.01389 

Best case     0.00347 

 

Table 2, below shows the response time taken by the 

individual models of discussion in worst case 

complexity scenario. Worst case scenario tests the 

response time with maximal erroneous pattern and 

maximally stretched inherently looping patterns as 

well as the mixture of different regional language 

words. 

TABLE 2  Worst  case - RegEx vs BeautifulSoup vs Lxml 

Q ualitative / 
Q uantitave  Method Time (ms) 

Type of Parsers RegEx BeautifulSoup Lxml RegEx BeautifulSoup Lxml 

Initializers Pattern_match() Init_BS() Init_Xpath() 371.11 872.91 87.30 

Scrapping method Separate_element() Scrap_all() Scrap_all() 581.93 371.03 321.05 

Total time (ms) 953.04 1243.94 408.35 

 

Table 3 below shows the response time taken by the 

individual models of discussion in average case 

complexity scenario. Average case scenario tests the 

response time with minimally occurring erroneous 

pattern and less number of stretched inherently 

looping patterns. 

 
TABLE 3  Average case - RegEx vs. BeautifulSoup vs. Lxml 

Q ualitative / 
Q uantitave  Method Time (ms) 

Type of Parsers RegEx BeautifulSoup Lxml RegEx BeautifulSoup Lxml 

Initializers Pattern_match() Init_BS() Init_Xpath() 165.71 807.01 56.71 

Scrapping method Separate_element() Scrap_all() Scrap_all() 233.03 512.72 163.2 

Total time (ms) 398.74 1319.73 219.91 

 

Table 4,  below shows the response time taken by the 

individual models of discussion in best case 

complexity scenario. Best case scenario tests the 

response time with minimally or no occurring 

erroneous pattern and less or no inherently looping 

patterns. 

 
TABLE 4  Best case - RegEx vs. BeautifulSoup vs. Lxml 

Q ualitative / 
Q uantitave  Method Time (ms) 

Type of Parsers RegEx BeautifulSoup Lxml RegEx BeautifulSoup Lxml 
Initializers Pattern_match() Init_BS() Init_Xpath() 56.17 321.01 50.13 

Scrapping method Separate_element() Scrap_all() Scrap_all() 97.53 137.67 152.83 

Total time (ms) 153.7 458.68 202.96 

Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC 2020)
DVD Part Number: CFP20V90-DVD; ISBN: 978-1-7281-5460-2

978-1-7281-5461-9/20/$31.00 ©2020 IEEE 366



From the above results it is evident that chosen a 

document with moderate matching patterns, the 

RegEx is extremely faster considering all the cases. 

The line chart is obtained from Microsoft Excel. The 

blue line, firebrick line, yellow green line 

corresponds to the response times of RegEx, 

BeautifulSoup and LXml respectively. 

 
CONCLUSION 

 
In this study, a dataset consisting of 15,026 words is 

taken for the analysis. Among the various available 

 stable release 

2020.1.2 (Build: 201.7846.105) / 25 June 2020 

developed by JetBrains under the license of Apache® 

Inc. The experiment is carried over all the three 

scrapping libraries in python namely RegEx, 

BeautifulSoup and Lxml. The document dataset is 

flexed from best case complex patterns to worst case 

complex patterns through average case complex 

patterns.  

 

The pattern is inflected to ensure the durability of the 

scrappers in all circumstances. The pattern tuning is 

exhibited manually by way of changing the 

grammatical pattern of the sentences as well as the 

replacement of high degree, rarely used thesaurus 

words. The outcome of each of the cases is recorded 

through a python time lapse method called 

time.clock() under the same hardware platform 

without changing or tuning any of the application 

software.  

 

From the tables, it is evident that RegEx is capable of 

delivering good throughput in pattern matching and 

scrapping. Further, this study has to be carried out to 

check the accuracy of these three scrappers along 

with other metrics like dynamism in the content, 

originality of the content. 

 

REFERENCES 
[1] Thivaharan S, Hariharan K, Christie Jerin Kumar, content 
grading system for Tamil based on indexed set weights using PC-
Kimmo, International journal of engineering research and 
technology, 177-181, Vol 8, Issue-3, ISSN: 2278 0181, March  

2019. 
 
[2] Eloisa Vargiu, Mirko Urru1, Exploiting web scraping in a 
collaborative filtering- based approach to web advertising, DOI: 

10.5430/air.v2n1p44, Artificial Intelligence Research, Vol. 2, 
No.1, 2013. 
 

[3] Xiaofei Liao, Hai Jin, Yunhao Liu, Lionel M. Ni, and Dafu 
Deng, AnySee: Peer-to-Peer Live Streaming, publication in the 
Proceedings IEEE Infocom, Vol. 2, Issue No.2, Dec  2011. 
 

[4] Document Object Model (DOM) Level 1 Specification, 2nd 
Edition, Version 1, W3C Working Draft 29 September, W3C, 
2000. 
 

[5] Nithesh.V. Chawla et al, Wrapper-based computation and 
evaluation of Sampling methods for imbalanced datasets, ACM, 
11https://doi.org/10.1145/1089827.1089830, Pages 24 33, August 
2005 

 

 

Table 5, below lists the True positive and true 

negative results of all the above execution with the 

previously calculated weights 0.055556, 0.013889, 

0.003472 for the worst, average and best case 

complexity of the document respectively. True 

positive is calculated from the best case outcomes of 

all the parsers. True negative is calculated from the 

worst case outcomes of all the parsers. 

 
TABLE 5   Prediction Accuracy 

Prediction accuracy / 
Type of parser RegEx BeautifulSoup LXml 

True Positive (TP)  8.53 6.37 0.704 

True Negative (TN) 52.94 17.27 1.41 

The figure 2 below shows the correlation chart in 

line mode between the prediction accuracy and the 

type of parsers. It is evident that, from the chart in 

both the True Positive and True negative mode of 

prediction accuracy the RegEx has the maximum 

turn-out.  

 
Fig 2 - correlation chart (prediction accuracy Vs. type of parsers 

All the above details are plotted as line chart in the 

figure3 below. The line plot is associated and 

analyzed between the document complexity (Worst, 

Average and Best) and the response time in 

milliseconds.  

 
Fig 3: Comparison of RegEx vs. BeautifulSoup vs. LXml 

Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC 2020)
DVD Part Number: CFP20V90-DVD; ISBN: 978-1-7281-5460-2

978-1-7281-5461-9/20/$31.00 ©2020 IEEE 367



[6] Hui-LingChen et al, A support vector machine classifier with 
rough set-based feature selection for breast cancer diagnosis, 

Expert Systems with Applications, Elsevier, Volume 38, Issue 7, 
Pages 9014-9022, July 2011. 
 
[7] ChunmeiZheng et al, A Study of Web Information Extraction 

Technology Based on Beautiful Soup, Journal of computers, 
Volume 10, Number 6, November 2015 
 
[8] Stephan Richter, lxml - XML and HTML with Python, 

https://lxml.de/ 
 
[9] Kilian Q. Weinberger, Lawrence K. Saul, Distance Metric 
Learning for Large MarginNearest Neighbor Classification, 

Journal of Machine Learning Research, 207-244, 2009.  
 
[10] Thomas, G.S., Thompson, R.C., Miyamoto, M.I. et al. The 

RegEx trial: a randomized, double-blind, placebo- and active-
controlled pilot study combining regadenoson, a selective A2A 
adenosine agonist, with low-level exercise, in patients undergoing 
myocardial perfusion imaging. J. Nucl. Cardiol. 16, 63 72, 

https://doi.org/10.1007/s12350-008-9001-9, July 2011. 
 
[11] Deborah L. McGuinness et al, Investigations into Trust for 
Collaborative Information Repositories: A Wikipedia Case Study, 

Proceedings of the Workshop on Models of Trust for the Web, 
May 21, 2006 
 
[12] Buckley C., Salton G., Allan J. (1994) The Effect of Adding 

Relevance Information in a Relevance Feedback Environment. In: 
Croft  B.W., van Rijsbergen C.J. (eds) SIGIR, Springer, London, 
1994. 

 
[13] Eong, D., In, P. H., Jarnjak, F., Kim, Y.-G., & Baik, D.-K., A 
message conversion system, XML-based metadata semantics 
description language and metadata repository. Journal of 

Information Science, 31(5), 394 406.  https:// doi.org / 10.1177 / 
0165551505055403, 2005. 
[14] James Clark, XML Path Language (XPath), Version 1.0, W3C 
Recommendation 16 November 1999,  

 
[15] QueryPerformanceCounter( ) function:  https:// 
docs.microsoft.com / en-us /windows /win32 /api/ profileapi/nf-
profileapi-queryperformancecounter 

 
[16] Daniel Glez-Peña, Anália Lourenço, Hugo López-Fernández, 
Miguel Reboiro-Jato, Florentino Fdez-Riverola, Web scraping 
technologies in an API world, Briefings in Bioinformatics, Volume 

15, Issue 5, pages 788 797, https://doi.org/10.1093/bib/bbt026, 
September 2014. 
 

[17] ata security in cloud 

Electronics, Communication and Aerospace Technology (ICECA), 

vol. 2, pp. 289-295. IEEE, 2017. 

[18] 

For Intrusion Detect  
Journal of Soft Computing Paradigm (JSCP), 1(02), 69-79. 

[19] Sotiris Kotsiantis et al, Handling imbalanced datasets: A 

review, GESTS International Transactions on Computer Science 
and Engineering, Vol.30, 2006. 

[20] Mohamed Bekkar et al, Evaluation Measures for Models 
Assessment over Imbalanced Data Sets, Journal of Information 
Engineering and Applications, ISSN 2224-5782 (print) ISSN 2225-
0506 (online), Vol.3, No.10, 2013 

 

 

Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC 2020)
DVD Part Number: CFP20V90-DVD; ISBN: 978-1-7281-5460-2

978-1-7281-5461-9/20/$31.00 ©2020 IEEE 368

View publication stats

https://www.researchgate.net/publication/347269334

