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A B S T R A C T

Lead ion (Pb2+) contamination poses a serious threat to both environmental and human health due to its high 
toxicity, even at trace levels. Consequently, the demand for ultrasensitive, selective, and practical detection 
methods has become increasingly critical for effective monitoring and remediation efforts. Among the available 
techniques, fluorescent chemosensors stand out for their rapid, sensitive, and often visible responses to Pb2+, 
enabling on-site and real-time detection. The organic small molecular fluorescent probes offer significant ad
vantages for sensing applications, including structural tunability, ease of functionalization, large Stokes shift, 
photostable, tunable optical properties, high sensitivity and selectivity. This review presents a comprehensive 
overview of recent developments (2020–2025) in organic fluorescent and colorimetric chemosensors for Pb2+

detection, emphasizing both chemical innovations and practical applications. This review systematically explores 
various modern chemosensor materials such as rhodamine, triazole, peptide-based derivatives, and a wide range 
of Schiff-base compounds including imines, azines, and azo derivatives. It also highlights the emerging role of 
metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hybrid architectures in enhancing 
sensitivity and selectivity toward lead ions. In addition, this review delves into the fundamental principles of 
fluorescence-based Pb2+ sensing, outlining key design strategies, the influence of functional groups, sensing 
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mechanisms and potential real-world applications. This work aims to serve as a valuable guide for researchers 
developing next-generation organic fluorescent probes for efficient and selective lead ion detection.

1. Introduction

Lead (Pb) is recognized as the second most toxic heavy metal and is 
non-biodegradable, posing serious risks to both human health and the 
environment [1–3]. Even at very low concentrations, Pb exposure 
particularly in children can result in irreversible neurological and 
physiological damage, including impaired cognitive development, 
stunted physical growth, and developmental delays [4]. Other reported 
health effects encompass anemia, reduced intelligence quotient (IQ), 
memory deficits, irritability, muscular paralysis, renal dysfunction, and 
long-term neurological disorders. Despite these well-established toxic
ities [5], Pb remains widely used in modern industries, including insu
lation materials, protective coatings, electronic components, paints, and 
storage batteries [6,7]. Because of its continued use, there is an urgent 
need for extremely sensitive and selective detection of Pb2+ at levels 
lower than the U.S. Environmental Protection Agency (USEPA) and 
World Health Organization (WHO) guidelines, which are 10 ppb (48 
nM) and 16 ppb (77 nM) for drinking water, respectively [8,9].

In the human body, Pb is widely distributed to sensitive organs, 
including the brain, liver, kidneys, and bones, where its long-term 
accumulation primarily occurs in bones and teeth. Normally, Pb con
centrations in blood are expected to remain at approximately 10 μg/dL 
in adults and 1.4 μg/dL in children; values above these levels indicate 
harmful exposure [10,11]. This bioaccumulation, coupled with slow 
excretion, makes Pb a persistent public health hazard, necessitating 
constant monitoring in environmental and biological systems. The 
traditional detection methods such as atomic absorption spectrometry 
(AAS), inductively coupled plasma mass spectrometry (ICP-MS), and 
inductively coupled plasma atomic emission spectroscopy (ICP-AES) 
deliver excellent sensitivity and selectivity, with detection limits often 
reaching 0.2–2.5 μg/L [12–14]. These techniques are considered gold 
standards for precise quantification in both environmental and clinical 
samples. However, their practical application is curtailed by several 
limitations, including high instrument costs, lack of portability, 
complicated analytical procedures, extended analysis times, and the 
requirement for highly skilled operators. Consequently, there is a 
pressing demand for alternative methods that are not only cost-effective 
and user-friendly but also suitable for rapid, real-time, or field- 
deployable Pb2+ detection.

To overcome these challenges, simpler approaches such as colori
metric assays have been widely explored. Colorimetric detection is 
based on visible color changes resulting from interactions between Pb2+

and organic chromophores, chelating dyes, or nanomaterials [15–19]. In 
classical examples, complexes with dyes such as dithizone exhibit 
distinct absorption spectrum changes upon Pb2+ binding, producing 
easily perceivable color variations. Recent strategies frequently rely on 
functionalized nanoparticles (e.g., gold nanoparticles) [20], where Pb- 
induced aggregation or plasmon resonance shifts provide clear visual 
signals [17,18,21–23]. These assays are advantageous due to their 
operational simplicity, low cost, minimal instrumentation, and ability to 
produce immediate qualitative or semi-quantitative outputs. Further
more, their compatibility with portable devices including smartphone 
imaging and machine-learning-based analysis opens possibilities for 
decentralized monitoring and emergency assessments. However, their 
moderate sensitivity, potential interference from coexisting ions, and 
occasional reliance on toxic reagents limit widespread adoption in 
complex real-world matrices [24,25].

On other hand, the fluorometric methods offer much higher sensi
tivity and selectivity [26]. These systems utilize the modulation of 
fluorescence emission intensity or wavelength upon Pb2+ binding with 
organic or hybrid probes. The fluorescence responses may manifest as 

emission increases (“turn-on”), quenching/shifts (“turn-off”), or ratio
metric responses that allow self-calibration [24,27–33]. Classical ex
amples include rhodamine-based probes, which undergo structural 
transformations leading to strong signal modulation. Incorporation of 
fluorophores into polymeric matrices, hydrogels, or nanocarrier systems 
further enhances signal amplification, reaching sub-ppb detection limits 
and enabling rapid quantitative analysis [34–36]. In contrast to colori
metric assays, fluorometric techniques provide not only fast response 
times but also strong quantitative reliability, making them highly 
competitive with conventional spectroscopic techniques. Moreover, 
their potential for integration into wearable, portable, and bioimaging 
platforms broadens their applicability from environmental sensing to 
biomedical diagnostics. However, challenges such as sensitivity to ma
trix interferences, competing metal ions, and the continuing require
ment for optical instrumentation remain significant [37,38]. The need 
for sensitive and selective Pb2+ detection is underscored by the fact that 
its health hazards occur at concentrations as low as parts per billion 
(ppb). Reliable methods must therefore be capable of monitoring trace 
Pb2+ in diverse and complex environments without interference, while 
still being affordable and straightforward for practical deployment. In 
this context, colorimetric and fluorometric approaches have emerged as 
powerful alternatives to conventional techniques, offering the benefits 
of low cost, portability, rapid signal readout, and potential for real-time 
monitoring. Both strategies continue to evolve, with recent advance
ments focusing on refining probe design, improving selectivity, and 
enhancing detection performance under real-world conditions.

Although numerous review articles have summarized the broader 
principles of heavy metal ion detection using optical or electrochemical 
transduction approaches [39–44]. For instance, two report in 2021 
described nanomaterial-based fluorescent sensors for lead ion detection 
[38,45]. However, to the best of our knowledge, no comprehensive re
view has yet highlighted organic fluorescent ligands specifically 
designed for selective Pb2+ sensing. The current work aims to fill this 
gap by presenting an in-depth discussion of recent advances in organic 
probe-based detection systems. Particular emphasis is placed on 
rhodamine-, triazole-, imine-, azine-, peptide-, metal organic framework 
(MOF)-, and covalent organic framework (COF)-based chemosensors. 
We further explore their sensing mechanisms, the design principles 
underlying selective signal responses, and the challenges that must be 
addressed to enable practical applications in environmental monitoring 
and biomedical analysis.

2. Mechanisms of organic-based fluorescent materials for Pb2þ

ion sensing

In order to comprehend the fluorescence properties of various 
probes, it is essential to recognize systems may function through either 
specific host-guest interactions or selective chemical reaction pathways. 
The validation of their fluorescence behaviour requires an understand
ing of binding interactions, particularly within host-guest chemistry. 
These interactions are typically non-covalent and reversible, such sys
tems are often designated as chemosensors. Notably, variations in 
fluorescence intensity and emission wavelength directly reflect recog
nition events between probe binding sites and target analytes. The 
rational design of fluorescent probes, particularly tailoring of the fluo
rophore component, is therefore critical to regulate fluorescence 
“switch-off/on” behaviour and enhance emission intensity. A typical 
fluorescent chemosensor is composed of three functional elements: (i) a 
fluorophore, responsible for light absorption and emission as well as 
signal transduction; (ii) a receptor unit (recognition site) that selectively 
binds analytes (example for Pb2+); and (iii) a linker/spacer connecting 
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peak at ~287 ◦C, significantly higher than that of the DHTP-BZ mono
mer, which indicates hindered ring-opening polymerization in the rigid 
COP backbone and enhanced thermal stability of the material (Fig. 20d). 
The fluorescence behaviour of Pery-DHTP-BZ-COP in solution was 
examined by photoluminescence spectroscopy. The polymer displayed 
distinct solvent-dependent emission, with maximum intensity observed 
in methanol. Its electron-rich composition facilitated efficient charge 
transfer to electron-deficient analytes, enabling sensing applications. 
Under UV illumination, the bright yellow emission of the polymer was 
markedly quenched only in the presence of Pb2+, while other metal ions 
produced negligible effects (Fig. 20e). The PL spectra and quenching 
efficiency analysis confirmed a strong interaction, with Pb2+ achieving 
nearly 97% quenching (Fig. 20e, f). The fluorescence titration revealed a 
systematic decrease in PL intensity with increasing Pb2+ concentration, 
yielding an excellent linear correlation (Fig. 20g, h). This response 
corresponded to a LOD as low as 0.5 μM, consistent with a PET-based 
quenching mechanism [154].

Yu et al. reported the synthesis of a luminescent polyimide covalent 
organic framework (Polyimide COF (TTA-PTCA)) by condensing 4,4′,4″- 
(1,3,5-triazine-2,4,6-triyl) triphenylamine (TTA) with perylene- 
3,4,9,10-tetracarboxylic dianhydride (PTCA) under solvothermal con
ditions. The schematic design of the fluorescence/smartphone dual- 
mode sensing platform based on this COF is illustrated in (Fig. 20i). 
The structural characterization confirmed the successful formation of 
imide-linked framework, the FT-IR spectrum displayed characteristic 
C––O and C–N–C vibrations, while solid-state 13C-NMR showed signals 
for carbonyl and aromatic carbons. The XRD analysis revealed distinct 
diffraction peaks, verifying the crystalline nature of the COF, and SEM/ 
TEM images demonstrated a lamellar sheet-like morphology with a 
uniform pore structure. The BET analysis indicated supermicroporous/ 
mesoporous features, providing a high surface area conducive to ion 
capture. The photoluminescence behaviour of the COF was studied in 
aqueous medium. Upon excitation at 436 nm, the COF exhibited a strong 

emission band centered at 496 nm. Fig. 20j shows that fluorescence 
intensity increased systematically with COF concentration, particularly 
in the 0.001–0.01 mg/mL range confirming tunable emission properties. 
In contrast, Fig. 20k highlights the quenching response to Pb2+, where 
the emission at 496 nm rapidly decreased within one minute, clearly 
visible even to the naked eye, reflecting the sensor’s high responsive
ness. The sensing performance was further examined by fluorescence 
titration, which revealed a progressive reduction in emission intensity 
with increasing Pb2+ concentration. The quenching was attributed to a 
synergistic mechanism involving FRET, PET, π-π stacking and dynamic 
quenching. The system exhibited a wide linear range from 0.1 nM to 1 
μM with an ultralow LOD of 50 pM (picomolar), surpassing the EPA 
threshold of 15 μg/L. In addition, smartphone-assisted RGB analysis 
enabled visual readouts, and machine learning models provided precise 
quantification. The COF sensor also showed excellent selectivity against 
competing metal ions, retained 94% of its fluorescence signal over 30 
days, and remained reusable for at least five cycles. The swab-based 
sampling further demonstrated its practicality in field conditions, 
while recovery experiments in real water samples achieved 101–104%, 
consistent with ICP validation [155].

Similarly, Rene et al., synthesized fluorescent ion-imprinted poly
mers (IIPs) and characterized for the selective detection of Pb2+ using a 
functional monomer, ANQ-ST, which incorporates a chelating 5-amino- 
8-hydroxyquinoline moiety. The Pb2+ detection was carried out in a 
water-acetone mixture (1:4 v/v), with fluorescence enhancement 
observed upon Pb2+ binding. The sensor demonstrated a LOD of 2.4 μg/ 
L, significantly below international safety thresholds, such as the WHO 
standard of 10 μg/L. The UV–Vis spectroscopy and modeling confirmed 
a 1:2 binding stoichiometry between Pb2+ and ANQ-ST under optimal 
conditions using a DMSO-MeOH solvent and a 0.42 metal/ligand ratio. 
The imprinting process enhanced specificity, as evidenced by higher 
fluorescence responses compared to non-imprinted polymers (NIPs). 
The competitive ion studies showed minimal interference from ions such 

Fig. 20. (a) Synthetic route of Pery-DHTP-BZ-COP; (b) FT-IR; (c) 13CNMR; and (d) DSC spectra of DHTP-BZ and Pery-DHTP-BZ-COP; (e) Photoluminescence spectra 
of Pery-DHTP-BZ-COP in the presence of different metal ions; (f) Corresponding quenching efficiencies (inset: UV images of Pery-DHTP-BZ-COP with various metal 
ions); (g) Fluorescence titration with increasing Pb2+ concentration; and (h) Linear correlation between PL intensity and Pb2+ concentration [154]; (i) Synthetic 
route of Polyimide COF (TTA-PTCA); (j) FL intensity of the TTA-PTCA at different concentrations (inset: corresponding images at varying concentrations); (k) 
Fluorescence intensity of the TTA-PTCA before and after addition of Pb2+ (inset: images showing the change upon Pb2+ addition) [155]. (Permission has taken from 
Reference no. [154,155]).
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as Ag+, Na+, Ca2+, Cd2+, Co2+, Cu2+ and Zn2+, even at high concen
trations. The calibration studies revealed high recovery rates (96–113%) 
for Pb2+ in spiked samples of tap water, mineral water, and seawater, 
highlighting the sensor’s reliability for practical environmental moni
toring. Furthermore, the sensor’s robust performance across various pH 
levels and aqueous matrices demonstrated its broad applicability and 
high selectivity for Pb2+ [156].

11. Conclusion and outlooks

Over the past five years, remarkable progress has been made in the 
design of organic fluorescent and colorimetric chemosensors for Pb2+

detection, as supported by numerous reports in recent literature. These 
review efforts encompass a wide variety of molecular architectures, such 
as rhodamine derivatives, imine-based Schiff bases, triazole scaffolds, 
peptides, and azo/azine compounds, as well as extended porous archi
tectures like MOFs and COFs. Initially, we examined the underlying 
mechanisms of organic-based fluorescent materials for Pb2+ ion sensing, 
which highlighted how structural flexibility, donor-acceptor modula
tion, and electronic transitions govern sensing behaviour. Building on 
this foundation, we first considered rhodamine-based fluorescent che
mosensors, which continue to serve as a benchmark for Pb2+ sensing due 
to their well-defined spirolactam ring-opening mechanism. This mech
anism allows excellent sensitivity and selectivity, particularly when 
combined with rational structural design strategies. Expanding beyond 
rhodamine systems, peptide-derived fluorescent probes emerged as a 
rapidly growing class. Their sequence-specific adaptability, defined co
ordination sites and tunable photophysical responses provide unique 
opportunities for biological applications, especially in complex cellular 

environments. Schiff base-derived probes, benefiting from the versatile 
C––N linkage, have demonstrated strong Pb2+ chelation, tunable pho
tophysical transitions and flexibility in functionalization, enabling 
mechanisms such as ESIPT suppression, ICT modulation and PET inhi
bition to generate highly selective “turn-on” or ratiometric fluorescence 
responses. The 1,2,3-triazole motif has become one of the most powerful 
scaffolds for Pb2+ detection due to its nitrogen-rich coordination envi
ronment, aromatic stabilization and synthetic modularity via CuAAC 
click chemistry. Literature examples including BSA-Trz and T1 highlight 
the ability of triazole-based probes to achieve ultralow nanomolar 
detection limits, reversible and reusable sensing, and multifunctionality, 
including bioimaging and molecular logic gate applications. Likewise, 
azo- and azine-based probes leverage their π-conjugated chromophores 
and electron-rich backbones to produce high-contrast optical responses, 
including visible colorimetric shifts and ratiometric fluorescence, often 
in aqueous media.

Beyond discrete molecular probes, porous hybrid materials such as 
MOFs and COFs provide extended sensing platforms with intrinsic 
structural order and high surface areas. Reports on Ti-, Zn-, and 
lanthanide-based MOFs demonstrate ratiometric sensing, highly 
reversible optical response, and femtomolar-to-nanomolar detection 
limits in aqueous conditions. Similarly, COFs and COPs (e.g., COF-CB, 
Pery-DHTP-BZ-COP) incorporate robust covalent linkages with tunable 
electron donor-acceptor frameworks, enabling selective quenching or 
fluorescence switching, high thermal stability, and recyclability, posi
tioning them as promising next-generation Pb2+ optical sensors. Moving 
forward, the central challenges remain: (i) improving selectivity in 
complex biological and environmental samples containing multiple 
competing cations, (ii) enhancing probe water solubility and reducing 

Fig. 21. Schematic illustration summarizing the future perspectives and design strategies for organic fluorescent Pb2+ sensors.
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cytotoxicity for bioimaging applications, and (iii) integrating molecular 
chemosensors into real-world devices (Fig. 21). The translation of these 
sensing platforms into portable, cost-efficient, and smartphone-enabled 
analytical tools will be critical for real-time, on-site Pb2+ monitoring.

Looking ahead, computational chemistry and artificial intelligence 
are poised to play transformative roles in the rational design of next- 
generation Pb2+ probes. Molecular docking, DFT, and TD-DFT simula
tions can provide valuable insights into metal-ligand interactions and 
guide the prediction of optical responses before synthesis, while AI and 
machine learning algorithms can screen vast molecular libraries, opti
mize sensing performance, and identify new design principles. The 
integration of these computational approaches with experimental syn
thesis will greatly accelerate the development of highly selective, effi
cient, and sustainable Pb2+ sensors. Future research should also focus on 
combining the high sensitivity of fluorescence-based systems with the 
simplicity and accessibility of colorimetric detection. The incorporation 
of nanostructured materials, green chemistry strategies, and smart 
technologies such as AI- and IoT-enabled sensing networks will enable 
real-time, autonomous, and environmentally friendly Pb2+ detection. 
Collectively, these interdisciplinary advances promise to deliver scal
able, reliable, and user-friendly sensing platforms, safeguarding envi
ronmental quality, food safety, and public health.
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