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ARTICLE INFO ABSTRACT

Keywords: Lead ion (Pb*") contamination poses a serious threat to both environmental and human health due to its high
Lead ion detection toxicity, even at trace levels. Consequently, the demand for ultrasensitive, selective, and practical detection
Chemosensor

3 _ methods has become increasingly critical for effective monitoring and remediation efforts. Among the available
Colorimetric sensor b2t
Organic ligands ’

Fluorescent sensor

techniques, fluorescent chemosensors stand out for their rapid, sensitive, and often visible responses to P
enabling on-site and real-time detection. The organic small molecular fluorescent probes offer significant ad-
vantages for sensing applications, including structural tunability, ease of functionalization, large Stokes shift,
photostable, tunable optical properties, high sensitivity and selectivity. This review presents a comprehensive
overview of recent developments (2020-2025) in organic fluorescent and colorimetric chemosensors for pb3+
detection, emphasizing both chemical innovations and practical applications. This review systematically explores
various modern chemosensor materials such as rhodamine, triazole, peptide-based derivatives, and a wide range
of Schiff-base compounds including imines, azines, and azo derivatives. It also highlights the emerging role of
metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hybrid architectures in enhancing
sensitivity and selectivity toward lead ions. In addition, this review delves into the fundamental principles of
fluorescence-based Pb?" sensing, outlining key design strategies, the influence of functional groups, sensing
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mechanisms and potential real-world applications. This work aims to serve as a valuable guide for researchers
developing next-generation organic fluorescent probes for efficient and selective lead ion detection.

1. Introduction

Lead (Pb) is recognized as the second most toxic heavy metal and is
non-biodegradable, posing serious risks to both human health and the
environment [1-3]. Even at very low concentrations, Pb exposure
particularly in children can result in irreversible neurological and
physiological damage, including impaired cognitive development,
stunted physical growth, and developmental delays [4]. Other reported
health effects encompass anemia, reduced intelligence quotient (IQ),
memory deficits, irritability, muscular paralysis, renal dysfunction, and
long-term neurological disorders. Despite these well-established toxic-
ities [5], Pb remains widely used in modern industries, including insu-
lation materials, protective coatings, electronic components, paints, and
storage batteries [6,7]. Because of its continued use, there is an urgent
need for extremely sensitive and selective detection of Pb?" at levels
lower than the U.S. Environmental Protection Agency (USEPA) and
World Health Organization (WHO) guidelines, which are 10 ppb (48
nM) and 16 ppb (77 nM) for drinking water, respectively [8,9].

In the human body, Pb is widely distributed to sensitive organs,
including the brain, liver, kidneys, and bones, where its long-term
accumulation primarily occurs in bones and teeth. Normally, Pb con-
centrations in blood are expected to remain at approximately 10 pg/dL
in adults and 1.4 pg/dL in children; values above these levels indicate
harmful exposure [10,11]. This bioaccumulation, coupled with slow
excretion, makes Pb a persistent public health hazard, necessitating
constant monitoring in environmental and biological systems. The
traditional detection methods such as atomic absorption spectrometry
(AAS), inductively coupled plasma mass spectrometry (ICP-MS), and
inductively coupled plasma atomic emission spectroscopy (ICP-AES)
deliver excellent sensitivity and selectivity, with detection limits often
reaching 0.2-2.5 pg/L [12-14]. These techniques are considered gold
standards for precise quantification in both environmental and clinical
samples. However, their practical application is curtailed by several
limitations, including high instrument costs, lack of portability,
complicated analytical procedures, extended analysis times, and the
requirement for highly skilled operators. Consequently, there is a
pressing demand for alternative methods that are not only cost-effective
and user-friendly but also suitable for rapid, real-time, or field-
deployable Pb2" detection.

To overcome these challenges, simpler approaches such as colori-
metric assays have been widely explored. Colorimetric detection is
based on visible color changes resulting from interactions between Pb*
and organic chromophores, chelating dyes, or nanomaterials [15-19]. In
classical examples, complexes with dyes such as dithizone exhibit
distinct absorption spectrum changes upon Pb%* binding, producing
easily perceivable color variations. Recent strategies frequently rely on
functionalized nanoparticles (e.g., gold nanoparticles) [20], where Pb-
induced aggregation or plasmon resonance shifts provide clear visual
signals [17,18,21-23]. These assays are advantageous due to their
operational simplicity, low cost, minimal instrumentation, and ability to
produce immediate qualitative or semi-quantitative outputs. Further-
more, their compatibility with portable devices including smartphone
imaging and machine-learning-based analysis opens possibilities for
decentralized monitoring and emergency assessments. However, their
moderate sensitivity, potential interference from coexisting ions, and
occasional reliance on toxic reagents limit widespread adoption in
complex real-world matrices [24,25].

On other hand, the fluorometric methods offer much higher sensi-
tivity and selectivity [26]. These systems utilize the modulation of
fluorescence emission intensity or wavelength upon Pb2* binding with
organic or hybrid probes. The fluorescence responses may manifest as

emission increases (“turn-on”), quenching/shifts (“turn-off”), or ratio-
metric responses that allow self-calibration [24,27-33]. Classical ex-
amples include rhodamine-based probes, which undergo structural
transformations leading to strong signal modulation. Incorporation of
fluorophores into polymeric matrices, hydrogels, or nanocarrier systems
further enhances signal amplification, reaching sub-ppb detection limits
and enabling rapid quantitative analysis [34-36]. In contrast to colori-
metric assays, fluorometric techniques provide not only fast response
times but also strong quantitative reliability, making them highly
competitive with conventional spectroscopic techniques. Moreover,
their potential for integration into wearable, portable, and bioimaging
platforms broadens their applicability from environmental sensing to
biomedical diagnostics. However, challenges such as sensitivity to ma-
trix interferences, competing metal ions, and the continuing require-
ment for optical instrumentation remain significant [37,38]. The need
for sensitive and selective Pb2* detection is underscored by the fact that
its health hazards occur at concentrations as low as parts per billion
(ppb). Reliable methods must therefore be capable of monitoring trace
Pb2* in diverse and complex environments without interference, while
still being affordable and straightforward for practical deployment. In
this context, colorimetric and fluorometric approaches have emerged as
powerful alternatives to conventional techniques, offering the benefits
of low cost, portability, rapid signal readout, and potential for real-time
monitoring. Both strategies continue to evolve, with recent advance-
ments focusing on refining probe design, improving selectivity, and
enhancing detection performance under real-world conditions.
Although numerous review articles have summarized the broader
principles of heavy metal ion detection using optical or electrochemical
transduction approaches [39-44]. For instance, two report in 2021
described nanomaterial-based fluorescent sensors for lead ion detection
[38,45]. However, to the best of our knowledge, no comprehensive re-
view has yet highlighted organic fluorescent ligands specifically
designed for selective Pb?" sensing. The current work aims to fill this
gap by presenting an in-depth discussion of recent advances in organic
probe-based detection systems. Particular emphasis is placed on
rhodamine-, triazole-, imine-, azine-, peptide-, metal organic framework
(MOF)-, and covalent organic framework (COF)-based chemosensors.
We further explore their sensing mechanisms, the design principles
underlying selective signal responses, and the challenges that must be
addressed to enable practical applications in environmental monitoring
and biomedical analysis.
2. Mechanisms of organic-based fluorescent materials for Pb2"
ion sensing

In order to comprehend the fluorescence properties of various
probes, it is essential to recognize systems may function through either
specific host-guest interactions or selective chemical reaction pathways.
The validation of their fluorescence behaviour requires an understand-
ing of binding interactions, particularly within host-guest chemistry.
These interactions are typically non-covalent and reversible, such sys-
tems are often designated as chemosensors. Notably, variations in
fluorescence intensity and emission wavelength directly reflect recog-
nition events between probe binding sites and target analytes. The
rational design of fluorescent probes, particularly tailoring of the fluo-
rophore component, is therefore critical to regulate fluorescence
“switch-off/on” behaviour and enhance emission intensity. A typical
fluorescent chemosensor is composed of three functional elements: (i) a
fluorophore, responsible for light absorption and emission as well as
signal transduction; (ii) a receptor unit (recognition site) that selectively
binds analytes (example for Pb2+); and (iii) a linker/spacer connecting
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Fig. 20. (a) Synthetic route of Pery-DHTP-BZ-COP; (b) FT-IR; (¢) 13CNMR; and (d) DSC spectra of DHTP-BZ and Pery-DHTP-BZ-COP; (e) Photoluminescence spectra
of Pery-DHTP-BZ-COP in the presence of different metal ions; (f) Corresponding quenching efficiencies (inset: UV images of Pery-DHTP-BZ-COP with various metal
ions); (g) Fluorescence titration with increasing pPb3* concentration; and (h) Linear correlation between PL intensity and Pb?* concentration [154] ; (i) Synthetic
route of Polyimide COF (TTA-PTCA); (j) FL intensity of the TTA-PTCA at different concentrations (inset: corresponding images at varying concentrations); (k)
Fluorescence intensity of the TTA-PTCA before and after addition of Pb%* (inset: images showing the change upon Pb?* addition) [155]. (Permission has taken from

Reference no. [154,155]).

peak at ~287 °C, significantly higher than that of the DHTP-BZ mono-
mer, which indicates hindered ring-opening polymerization in the rigid
COP backbone and enhanced thermal stability of the material (Fig. 20d).
The fluorescence behaviour of Pery-DHTP-BZ-COP in solution was
examined by photoluminescence spectroscopy. The polymer displayed
distinct solvent-dependent emission, with maximum intensity observed
in methanol. Its electron-rich composition facilitated efficient charge
transfer to electron-deficient analytes, enabling sensing applications.
Under UV illumination, the bright yellow emission of the polymer was
markedly quenched only in the presence of Pb?*, while other metal ions
produced negligible effects (Fig. 20e). The PL spectra and quenching
efficiency analysis confirmed a strong interaction, with Pb* achieving
nearly 97% quenching (Fig. 20e, ). The fluorescence titration revealed a
systematic decrease in PL intensity with increasing Pb%" concentration,
yielding an excellent linear correlation (Fig. 20g, h). This response
corresponded to a LOD as low as 0.5 pM, consistent with a PET-based
quenching mechanism [154].

Yu et al. reported the synthesis of a luminescent polyimide covalent
organic framework (Polyimide COF (TTA-PTCA)) by condensing 4,4’,4"-
(1,3,5-triazine-2,4,6-triyl) triphenylamine (TTA) with perylene-
3,4,9,10-tetracarboxylic dianhydride (PTCA) under solvothermal con-
ditions. The schematic design of the fluorescence/smartphone dual-
mode sensing platform based on this COF is illustrated in (Fig. 20i).
The structural characterization confirmed the successful formation of
imide-linked framework, the FT-IR spectrum displayed characteristic
C=0 and C-N-C vibrations, while solid-state >*C-NMR showed signals
for carbonyl and aromatic carbons. The XRD analysis revealed distinct
diffraction peaks, verifying the crystalline nature of the COF, and SEM/
TEM images demonstrated a lamellar sheet-like morphology with a
uniform pore structure. The BET analysis indicated supermicroporous/
mesoporous features, providing a high surface area conducive to ion
capture. The photoluminescence behaviour of the COF was studied in
aqueous medium. Upon excitation at 436 nm, the COF exhibited a strong
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emission band centered at 496 nm. Fig. 20j shows that fluorescence
intensity increased systematically with COF concentration, particularly
in the 0.001-0.01 mg/mL range confirming tunable emission properties.
In contrast, Fig. 20k highlights the quenching response to Pb2*, where
the emission at 496 nm rapidly decreased within one minute, clearly
visible even to the naked eye, reflecting the sensor’s high responsive-
ness. The sensing performance was further examined by fluorescence
titration, which revealed a progressive reduction in emission intensity
with increasing Pb?* concentration. The quenching was attributed to a
synergistic mechanism involving FRET, PET, n-r stacking and dynamic
quenching. The system exhibited a wide linear range from 0.1 nM to 1
uM with an ultralow LOD of 50 pM (picomolar), surpassing the EPA
threshold of 15 pg/L. In addition, smartphone-assisted RGB analysis
enabled visual readouts, and machine learning models provided precise
quantification. The COF sensor also showed excellent selectivity against
competing metal ions, retained 94% of its fluorescence signal over 30
days, and remained reusable for at least five cycles. The swab-based
sampling further demonstrated its practicality in field conditions,
while recovery experiments in real water samples achieved 101-104%,
consistent with ICP validation [155].

Similarly, Rene et al., synthesized fluorescent ion-imprinted poly-
mers (IIPs) and characterized for the selective detection of Pb** using a
functional monomer, ANQ-ST, which incorporates a chelating 5-amino-
8-hydroxyquinoline moiety. The Pb?" detection was carried out in a
water-acetone mixture (1:4 v/v), with fluorescence enhancement
observed upon Pb2* binding. The sensor demonstrated a LOD of 2.4 pg/
L, significantly below international safety thresholds, such as the WHO
standard of 10 pg/L. The UV-Vis spectroscopy and modeling confirmed
a 1:2 binding stoichiometry between Pb>" and ANQ-ST under optimal
conditions using a DMSO-MeOH solvent and a 0.42 metal/ligand ratio.
The imprinting process enhanced specificity, as evidenced by higher
fluorescence responses compared to non-imprinted polymers (NIPs).
The competitive ion studies showed minimal interference from ions such
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as Agt, Nat, ca?*, cd?*, Co?*, Cu®' and Zn%*, even at high concen-
trations. The calibration studies revealed high recovery rates (96-113%)
for Pb2* in spiked samples of tap water, mineral water, and seawater,
highlighting the sensor’s reliability for practical environmental moni-
toring. Furthermore, the sensor’s robust performance across various pH
levels and aqueous matrices demonstrated its broad applicability and
high selectivity for Pb* [156].

11. Conclusion and outlooks

Over the past five years, remarkable progress has been made in the
design of organic fluorescent and colorimetric chemosensors for Pb2*
detection, as supported by numerous reports in recent literature. These
review efforts encompass a wide variety of molecular architectures, such
as rhodamine derivatives, imine-based Schiff bases, triazole scaffolds,
peptides, and azo/azine compounds, as well as extended porous archi-
tectures like MOFs and COFs. Initially, we examined the underlying
mechanisms of organic-based fluorescent materials for Pb%* jon sensing,
which highlighted how structural flexibility, donor-acceptor modula-
tion, and electronic transitions govern sensing behaviour. Building on
this foundation, we first considered rhodamine-based fluorescent che-
mosensors, which continue to serve as a benchmark for Pb?* sensing due
to their well-defined spirolactam ring-opening mechanism. This mech-
anism allows excellent sensitivity and selectivity, particularly when
combined with rational structural design strategies. Expanding beyond
rhodamine systems, peptide-derived fluorescent probes emerged as a
rapidly growing class. Their sequence-specific adaptability, defined co-
ordination sites and tunable photophysical responses provide unique
opportunities for biological applications, especially in complex cellular

Coordination Chemistry Reviews 550 (2026) 217384

environments. Schiff base-derived probes, benefiting from the versatile
C=N linkage, have demonstrated strong Pb?" chelation, tunable pho-
tophysical transitions and flexibility in functionalization, enabling
mechanisms such as ESIPT suppression, ICT modulation and PET inhi-
bition to generate highly selective “turn-on” or ratiometric fluorescence
responses. The 1,2,3-triazole motif has become one of the most powerful
scaffolds for Pb?* detection due to its nitrogen-rich coordination envi-
ronment, aromatic stabilization and synthetic modularity via CuAAC
click chemistry. Literature examples including BSA-Trz and T1 highlight
the ability of triazole-based probes to achieve ultralow nanomolar
detection limits, reversible and reusable sensing, and multifunctionality,
including bioimaging and molecular logic gate applications. Likewise,
azo- and azine-based probes leverage their n-conjugated chromophores
and electron-rich backbones to produce high-contrast optical responses,
including visible colorimetric shifts and ratiometric fluorescence, often
in aqueous media.

Beyond discrete molecular probes, porous hybrid materials such as
MOFs and COFs provide extended sensing platforms with intrinsic
structural order and high surface areas. Reports on Ti-, Zn-, and
lanthanide-based MOFs demonstrate ratiometric sensing, highly
reversible optical response, and femtomolar-to-nanomolar detection
limits in aqueous conditions. Similarly, COFs and COPs (e.g., COF-CB,
Pery-DHTP-BZ-COP) incorporate robust covalent linkages with tunable
electron donor-acceptor frameworks, enabling selective quenching or
fluorescence switching, high thermal stability, and recyclability, posi-
tioning them as promising next-generation Pb?* optical sensors. Moving
forward, the central challenges remain: (i) improving selectivity in
complex biological and environmental samples containing multiple
competing cations, (ii) enhancing probe water solubility and reducing
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cytotoxicity for bioimaging applications, and (iii) integrating molecular
chemosensors into real-world devices (Fig. 21). The translation of these
sensing platforms into portable, cost-efficient, and smartphone-enabled
analytical tools will be critical for real-time, on-site Pb>* monitoring.

Looking ahead, computational chemistry and artificial intelligence
are poised to play transformative roles in the rational design of next-
generation Pb%* probes. Molecular docking, DFT, and TD-DFT simula-
tions can provide valuable insights into metal-ligand interactions and
guide the prediction of optical responses before synthesis, while Al and
machine learning algorithms can screen vast molecular libraries, opti-
mize sensing performance, and identify new design principles. The
integration of these computational approaches with experimental syn-
thesis will greatly accelerate the development of highly selective, effi-
cient, and sustainable Pb?" sensors. Future research should also focus on
combining the high sensitivity of fluorescence-based systems with the
simplicity and accessibility of colorimetric detection. The incorporation
of nanostructured materials, green chemistry strategies, and smart
technologies such as Al- and IoT-enabled sensing networks will enable
real-time, autonomous, and environmentally friendly Pb2* detection.
Collectively, these interdisciplinary advances promise to deliver scal-
able, reliable, and user-friendly sensing platforms, safeguarding envi-
ronmental quality, food safety, and public health.
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