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A B S T R A C T

With the increasing integration of solar photovoltaic (PV) systems into modern power grids, grid stability and 
power quality have become a critical challenge due to environmental variability and non-linear load dynamics. 
To deal with these problems, this research proposes a novel control strategy by incorporating Deep Attention 
Dilated Residual Convolutional Neural Network (DADRCNN) with Hippopotamus Optimization Algorithm (HOA) 
to optimally manage energy in a grid-connected photovoltaic system. The key goal of this study is to mitigate 
power quality issues like harmonic distortions, voltage fluctuations, and load imbalances, thereby improving the 
power system’s overall performance and stability. To achieve this, DADRCNN precisely tracks the maximum 
power point, while HOA optimizes the converter’s duty cycle to ensure effective control. The proposed control 
technique is simulated in MATLAB and evaluated against existing strategies. Findings demonstrate that the 
proposed strategy achieves a high accuracy of 99.84 %, the lowest total harmonic distortion of 1.08 %, and a low 
computation time of 1.05 s, outperforming existing models. In addition, statistical analysis confirms the 
robustness and reliability of the proposed technique, indicating its practical applicability for PV energy con-
version in smart grid environments.

1. Introduction

a) Background

Solar photovoltaic (PV) systems have become integral to modern 
energy infrastructures, offering sustainable and environmentally 
friendly power generation [1]. Their incorporation into grid networks 
improves energy security by diversifying the energy mix and aids in the 
reduction of greenhouse gas emissions [2]. The evolution of grid-tied 
photovoltaic systems has led to the development of multi-functional 
energy conversion systems that extend beyond mere power generation 
[3]. These systems are designed to perform secondary services such as 
reactive power compensation, voltage regulation, and harmonic miti-
gation, improving overall power quality [4-6]. Complex control tech-
niques have been used to maximize the performance of these 
multifunctional systems. Techniques such as adaptive neuro-fuzzy 
inference systems have been explored to improve the dynamic 
response and stability of grid-tied photovoltaic systems [7-10].

Environmental factors such as fluctuating irradiance and tempera-
ture introduce further instability in PV output, making consistent power 
delivery a challenge [11,12]. Furthermore, the integration of photo-
voltaic systems into the grid requires effective coordination with energy 
storage technologies to mitigate intermittency and ensure 
demand-supply balance [13]. The nonlinear nature of PV systems has 
led to the development of several Maximum Power Point Tracking 
(MPPT) approaches, like gradual behaviour, perturb and observe (P&O), 
and fuzzy-based methods [14]. Managing PV power within the grid and 
addressing associated challenges presents a formidable task. The liter-
ature discusses several solar-fed grid-tied configurations intended to 
improve power quality [15]. The proposed method has used Solar En-
ergy Conversion Systems (SECS) to support the grid in remote areas and 
during moments of high demand [16]. These issues become more 
prominent in smaller energy systems, where load behavior is less pre-
dictable and more sensitive to disturbances, often resulting in power 
quality fluctuations and stability concerns [17]. 
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algorithm’s robustness but also emphasizes its practical feasibility for 
deployment in modern distributed energy systems.

Moreover, the proposed method’s computational efficiency, 
demonstrated by its shortest computing time, offers a significant 
advancement over current methods. This is especially critical for ap-
plications in dynamic grid environments where latency can significantly 
damage response accuracy and system performance. The statistical 
analysis reinforces this by showing the lowest standard deviation and 
closer grouping around the mean, indicating higher reliability and 
consistency. The effective fusion of a bio-inspired optimization method 
with deep learning-based temporal-spatial feature extraction sets this 
work apart. This allows for a more intelligent, adaptive, and resilient 
control strategy that dynamically adjusts to uncertainties, offering sig-
nificant advancements over rule-based controllers. However, the study 
does not fully capture the complexities and stochastic variations of real- 
world grid conditions. Moreover, the strategy was exclusively applied to 
a PV-based system, which limits its immediate generalizability to hybrid 
renewable systems involving wind, battery storage, or other distributed 
energy resources.

5. Conclusion

This research presented a novel control strategy to effectively 
manage a grid-linked solar photovoltaic system. The proposed strategy 
is applied to ease power quality issues like harmonic distortions and load 
imbalances, while also optimizing computational efficiency. The tech-
nology guarantees higher energy conversion and increased overall sta-
bility of the grid-linked photovoltaic system by precisely tracking the 
maximum power point with DADRCNN and fine-tuning the duty cycle of 

the converter using HOA. The proposed control strategy has been 
excluded in MATLAB and assessed against existing methods. The out-
comes indicate that the proposed strategy achieves the fastest compu-
tation time of 1.05 s, significantly outperforming SNN, AGO-RNN and 
MABC-ANN. This highlights its superior computational efficiency, 
making it well-suited for dynamic grid-tied solar energy applications. 
Additionally, the proposed method achieves the highest accuracy at 
99.84 %, and also attains a low THD of 1.08 % analysed to existing 
models, indicating superior power quality. Statistical analysis further 
shows the proposed strategy’s reliability, outperforming the existing 
methods. These findings confirm that the proposed control strategy of-
fers improved performance, establishing it as an effective and robust 
solution for grid-tied solar energy conversion systems. Future work will 
focus on extending this control strategy to hybrid renewable energy 
systems, aiming to further enhance system resilience and energy man-
agement. Additionally, implementing the proposed method in real-time 
hardware setups will provide practical validation.
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Fig. 10. Comparison of computation time between proposed and exist-
ing methods.

Table 3 
Comparative analyses between proposed and existing methods.

Methods Accuracy (%) THD (%)

Proposed 99.84 1.08
SNN 91.22 4.05
AGO-RNN 94.73 1.89
MABC-ANN 96.01 2.34

Table 4 
Statistical comparison between proposed and existing methods.

Methods Std. Deviation Mean Median

Proposed 0.082 1.208 1.173
SNN 0.133 1.362 1.357
AGO-RNN 0.107 1.303 1.296
MABC-ANN 0.096 1.279 1.224
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