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A B S T R A C T

Despite technological advancements, heart disease continues to be a major global health challenge, emphasizing
the importance of developing accurate predictive models for early detection and timely intervention. This study
proposes a heart disease prediction model integrating a stacking classifier with a nature-inspired meta-heuristic
algorithm. It employs an improved Binary Salp Swarm Algorithm (BSSA) by incorporating a wolf optimizer and
opposition-based learning for optimal feature selection. The proposed Stacking Classifier (SC) architecture fea-
tures a two-tier ensemble: heterogeneous base classifiers at level 0 and a meta-learner at level 1. The BSSA is used
to identify optimal features, which are then utilized to construct the stacking classifier. Experimental results
demonstrate superior performance, achieving 95 % accuracy, 0.92 sensitivity, 0.97 specificity, 0.96 precision,
and an F1 score of 0.95, with notably low false positive and false negative rates. Further, validation on larger
datasets yielded an accuracy of 87.46 %. The feature selection process adopts a multi-objective strategy which
enhances the classification accuracy and outperforms conventional techniques. The proposed method demon-
strates significant potential for improving the predictive modelling in clinical settings for diagnosing heart
diseases.

1. Introduction

Heart disease continues to be a leading cause of mortality worldwide,
with projections indicating a significant increase in prevalence by 2030
[1]. According to the European Society of Cardiology, 3.6 million people
globally received a diagnosis of a cardiovascular ailment in the last year.
Clinical studies identify the following main factors that contribute to
heart failure: Modifiable factors that have a significant impact are
cholesterol, obesity, smoking, and physical inactivity and factors like
sex, age, and family history are uncontrollable. A healthy lifestyle can
help to reduce the chance of cardiovascular problems [2]. A precise
diagnosis is essential due to the rising rates of heart disease incidence
and mortality. Reducing death rates and the progression of the disease
are critical to the clinical prognosis. Clinical prediction systems are
assisted by computerized methods that help with early risk assessment
and diagnosis [3]. The healthcare industry leverages the use of artificial
intelligence and data mining to support clinicians. [4]. Specifically,

quantum computing is being used by researchers to reduce training time
and improve forecast accuracy [5,6]. Generative Adversarial Networks
are deployed to increase the data samples before classification [7].

The prediction process involves primary steps like data collection,
feature selection, and categorization. Feature selection plays a vital role
in identifying the relevant feature subsets and thereby minimizing the
classifier performance degradation and reducing model complexity [8].
It is a key step that improves the classifier’s performance and shortens
the training time. Various techniques exist for feature selection, pri-
marily filter and wrapper-based methods. Filter methods like analysis of
variance, chi-square estimation, and correlation analysis employ sta-
tistical procedures to identify decision variable interdependencies [9,
10]. Wrapper techniques utilize classification algorithms to score
feature subsets by selecting the subset with the highest classification
score for subsequent decisions [11]. Heuristic and random search-based
feature selection methods have recently gained prominence [12]. Heu-
ristic search aims to find the optimal feature set, maximizing accuracy or
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metaheuristic algorithms, such as PSO, GA, and GWO, which involve
additional operations like mutation, crossover, and velocity updates.
Moreover, BSSA requires fewer tunable parameters compared to PSO
and GWO, simplifying implementation and optimization. While the
stacking approach increases computational complexity, it enhances
performance and robustness by integrating multiple diverse classifiers.
Although this added complexity may demand more resources, it often
leads to superior predictive accuracy of 95 %.

4.10. Limitations of the proposed approach

This study is developed using UCI benchmark datasets to explore the
potential of the stacking method. However, the performance of the
proposed model needs to be validated on the real-time dataset. A dataset
with more clinical biomarkers should also be utilized to test this study.
The proposed model is computationally intensive and can be deployed
using larger processing environments and cloud-based solutions to
manage extensive datasets. With preprocessing provided, the model can
handle heterogeneous data such as biomarkers, vital signs, and elec-
tronic health records. Feature analysis enhances interpretability in
clinical settings by identifying key predictors of heart disease, enabling
early detection and monitoring.

5. Conclusion

An optimized ensemble stacking classifier is presented for heart
disease classification. The proposed method incorporated the optimal
feature selection approach using a modified Salp swarm algorithm.
Then, the selected features are classified using a two-level stacking
classifier. The stacking classifier employed the traditional machine
learning classifiers in the hierarchical structure. Experimentation using
the UCI heart disease dataset demonstrated the proposed BSSA-SC which
achieved an accuracy of 95% and showed better performance over SVM,
RF, MLP, XGB, and ADB classifiers. Incorporating an improved salp
optimizer enhanced the prediction process, resulting in a 5.5 %
improvement in accuracy. The suggested approach performed better
than the previous methods, with accuracy gains of 49.37 %, 14.45 %,
5.55 %, 4.39 %, and 11.76 % against PSO + KNN, Dragonfly + hybrid
classifier, stacked SVM, DUMF + Ensemble Classifier, and MI +MLP. In
the future, hybrid optimization and deep learning classifiers might
further improve the effectiveness of the proposed method. Despite the
contributions, this study can be investigated for the real-time bio-
markers from the affected patients.
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