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The present work investigates the thermal and mechanical behavior of Ti-6Al-4 V alloy across a temper-
ature range from room temperature to 1000 �C, focusing on its application in welding and hot-processing
simulations. The study examines temperature-dependent properties, such as phase transformation, thermal
expansion, density, and specific heat capacity, with a specific emphasis on the a (hexagonal close-packed,
HCP) to b (body-centered cubic, BCC) phase transformation around 800 �C. Various testing methods,
including tensile testing, dilatometry, and differential scanning calorimetry (DSC), were used to generate
data for these properties. The results show a marked decrease in density and mechanical strength at
elevated temperatures, with notable shifts in thermal expansion and heat absorption trends during the a to
b phase transition. Microstructural analyses of welded samples reveal distinct regions: the base metal, heat-
affected zone, and fusion zone, each showing unique thermal responses and mechanical characteristics. In
particular, the HAZ exhibits grain coarsening and reduced mechanical properties, while the FZ displays a
dendritic b-phase structure with increased hardness but reduced ductility. These findings provide a detailed
database for the thermomechanical modeling of Ti-6Al-4 V alloy, supporting more accurate simulations of
welding and hot deformation processes, essential for optimizing performance in high-temperature appli-
cations.
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1. Introduction

The Ti6Al4V, a dual-phase a + b titanium-based alloy, has
become a material of significant interest due to its excellent
mechanical properties, such as high specific strength, corrosion
resistance and fatigue strength (Ref 1). As Ti6Al4V exhibits a
favorable balance between the properties of mechanical and
thermal stability, it is extensively used in the aerospace
application (Ref 2). It is also used in marine industries in
making of submarine hulls and offshore drilling equipment due
to its superior durability in saltwater and harsh environments
(Ref 3). The alloy is also frequently used in biomedical
applications, such as medical implants and bone fixation plates,
due to its excellent biocompatibility (Ref 4). The versatility of
applications is mainly due to the material�s compatibility of
working in extreme operational conditions.

The adaptability of Ti6Al4V with both modern processes
like additive manufacturing (AM) and more conventional ones

like welding is another factor contributing to the alloy’s broad
variety of applications. Titanium alloys are welded using arc
welding, tungsten inert gas (TIG) welding, electron beam
welding, and laser beam welding (Ref 5) and also joined using
other techniques, such as diffusion bonding and brazing (Ref 6,
7). During the manufacturing processes, such as welding, the
alloy is subjected to complex mechanical and thermal load
conditions which can influence its performance. With the
advancement of technology in computers and simulation
software, the numerical simulation has become more cost-
effective in predicting the welding behavior such as tempera-
ture gradients, transient stresses, phase transformation, magni-
tude and distribution of residual stresses (Ref 8). However, the
precision of simulation results depends on the accuracy of
thermomechanical property database available for the welding
material of interest.

The materials during weld are exposed to very high
temperatures frequently reaching or exceeding the melting
point in the localized regions of the weld, while the adjacent
areas relatively remain at lower temperatures. It creates steep
temperature gradients which creates different material proper-
ties in the weld zone, heat-affected zone and the base metal
(Ref 9). At the weld zone, the material melts to form the weld
pool and its behavior can be determined by the material
properties at elevated temperatures. The amount of heat
required to reach the welding temperature is determined by
the specific heat capacity of the material. The data are
instrumental in providing the information on the thermal field
and its effect over the formation of weld pool and the cooling
rates (Ref 10).
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The study also details the variations in thermal expansion
and density across the temperature spectrum, with notable shifts
around the a to b phase transformation. Such data enable
simulations to model the alloy�s expansion and contraction
more accurately under thermal loads, which is essential for
predicting residual stresses and thermal strain in welded and
hot-processed parts. These insights into thermal behavior are
critical for high-stress applications, where residual stress
management is crucial to maintain part integrity. However,
while the database developed is comprehensive, further vali-
dation through long-term service simulations and real-world
applications would strengthen the applicability of the results.

4. Conclusions

The thermal and mechanical behavior of Ti-6Al-4 V alloy
was investigated under high-temperature conditions relevant to
welding and hot-processing applications. The following con-
clusions are made based on the experimental work:

1. The a to b phase transformation in Ti-6Al-4 V alloy oc-
curs around 800 �C, which significantly affects its den-

sity, thermal expansion, and strength. The density
decreases at a faster rate in the b-phase region, with the
rate increasing from approximately 0.16 9 10�3 g/cm3/
�C in the a-phase to 1.2 9 10�3 g/cm3/ �C in the b-
phase.

2. The yield strength and ultimate tensile strength of Ti-
6Al-4 V decrease gradually as temperature increases,
dropping by nearly 50% from room temperature up to
800 �C. This trend is accompanied by changes in the al-
loy�s stress–strain response, which shifts from strain hard-
ening at lower temperatures to softening at higher
temperatures due to thermal activation and dynamic
recovery processes. Also, it is found that the nil-strength
temperature of the alloy is 982 �C.

3. During welding, distinct microstructural zones form: the
heat-affected zone (HAZ) shows grain coarsening, lead-
ing to reduced mechanical stability, while the fusion zone
(FZ) exhibits a dendritic b-phase structure due to rapid
cooling, resulting in higher hardness but lower ductility.

4. Fractographic analysis reveals a shift in fracture behavior
with temperature. At room and intermediate temperatures,
the alloy shows a ductile fracture mode with dimple for-
mation, indicating plastic deformation. At higher temper-
atures (around 1000 �C), fracture becomes a mix of
ductile and brittle characteristics, with cleavage facets
appearing alongside dimples.

5. This study provides a comprehensive database on Ti-6Al-
4 V alloy properties across a wide temperature range,
supporting accurate simulation models for welding and
hot-processing applications. These data allow for im-
proved prediction of thermal gradients, stress distribu-
tions, and structural stability in high-temperature
environments.
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Fig. 12 Tensile tested sample of welded Ti-6Al-4 V alloy. BM, HZA, and FZ mentioned in this figure represent base metal, heat-affected zone,
and fusion zone, respectively

Fig. 13 SEM image of the post-welded fractured surface after
tensile deformation at room temperature
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Data Availability
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