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A B S T R A C T

The deliberate tampering of turmeric powder with potentially dangerous substances is a serious risk to the health 
and welfare of consumers. In this work, we sought to create a reliable technique for identifying a prevalent 
adulterant in turmeric powder—ferrous sulfate heptahydrate. Using the weight-to-weight approach, samples of 
turmeric powder were gathered from different sources and combined with ferrous sulfate heptahydrate in 
varying quantities (0 %, 1 %, 5 %, 10 %, 15 %, and 20 %). The mixed samples were analyzed using spectroscopic 
methods such as Raman spectroscopy and Fourier-transform infrared spectroscopy (FTIR). The ferrous sulfate 
heptahydrate’s distinctive peaks were detected at 1060 cm− 1 in Fourier transform infrared spectra (FTIR). On the 
other hand, turmeric showed clear peaks at 1630 cm− 1, 1745 cm− 1, 2930 cm− 1, and 3720 cm− 1 in FTIR, in 
addition to peaks at 250 cm− 1, 328 cm− 1, and 420 cm− 1 in Raman spectroscopy. In addition, elemental mapping 
was applied to guarantee that the adulterant was evenly distributed throughout the mixture. Principal compo-
nent analysis and Soft Independent Modelling Class Analogy (SIMCA) models, when used in conjunction with this 
technique, allowed for the successful separation of tainted and pure turmeric samples. Our results show that 
elemental mapping and spectroscopy are useful tools for identifying ferrous sulfate heptahydrate adulteration in 
turmeric powder. This approach has the potential to guarantee the security and caliber of turmeric-related 
products sold.

1. Introduction

Turmeric powder is a widely used spice known for its culinary, me-
dicinal, and therapeutic properties. It plays a significant role in tradi-
tional and modern medicine due to its anti-inflammatory, antioxidant, 
and antimicrobial effects. However, the demand for turmeric powder 
has also led to its adulteration with harmful substances to enhance 
appearance, weight, and profitability. One such adulterant is ferrous 
sulphate heptahydrate, whose addition poses significant public health 
risks. Consumption of turmeric powder adulterated with ferrous sul-
phate heptahydrate may lead to iron overload, oxidative stress, and 
gastrointestinal issues, potentially resulting in severe health complica-
tions such as liver and cardiovascular damage. Despite the societal 
impact, limited studies have been conducted on its prevalence and 
specific health implications, underscoring the need for comprehensive 
research in this area [4].

Various analytical techniques have been developed to detect adul-
terants in turmeric powder. For instance, UV–Visible Spectroscopy has 
been employed to identify color-based adulterants such as metanil 

yellow with a detection limit of 1.5 ppm and a precision of ± 3 % [1], 
Similarly, Raman spectroscopy demonstrated high specificity (~95 %) 
in detecting Sudan dye but faced limitations due to false positive rates 
[10]. Fourier Transform Infrared Spectroscopy (FTIR) has proven 
effective in identifying lead chromate with a sensitivity of 97 % [11], 
Fourier Transform Infrared Spectroscopy (FTIR) has proven effective in 
identifying lead chromate with a sensitivity of 97 % [7], and Advanced 
methods like terahertz spectroscopy achieved detection thresholds of ~ 
2 % (w/w) for structural adulterants [14]. Furthermore, chromato-
graphic methods and electrochemical detection have also been utilized 
to identify certain adulterants with high precision but are time-intensive 
and unsuitable for rapid screening. Despite these advancements, existing 
studies have largely focused on detecting specific adulterants such as 
metanil yellow, lead chromate, and Sudan dye, with limited applica-
bility to ferrous sulfate heptahydrate. Additionally, reliance on single 
analytical techniques often fails to address complex adulteration sce-
narios or the coexistence of multiple adulterants Quantitative methods 
such as HPLC and chromatography offer high accuracy but lack the 
ability to visualize the distribution of adulterants within samples. 
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quantification (LOQ) for ferrous sulfate heptahydrate in turmeric pow-
der. The LOD and LOQ were calculated based on the signal-to-noise ratio 
(S/N), where the LOD was defined as the concentration level yielding a 
signal three times the noise, and the LOQ was defined as the concen-
tration level yielding a signal ten times the noise.

FTIR Spectroscopy: The LOD and LOQ were found to be 0.5 % and 
1.5 % (w/w) respectively, based on characteristic absorption peaks 
around 1020 cm− 1 and 1120 cm− 1, corresponding to Fe-S stretching 
vibrations.

Raman Spectroscopy: With a 532 nm laser and 10 mW power, the 
LOD was 0.3 %, and the LOQ was 1.0 %, highlighting the technique’s 
superior sensitivity for detecting vibrational modes specific to 
adulterants.

UV–Vis Spectroscopy: Absorption bands at 520 nm provided an 
LOD of 0.7 % and an LOQ of 2.0 %. This technique was particularly 
effective in identifying color-based changes induced by adulterants.

Cyclic Voltammetry: Electrochemical signals showed an LOD of 0.8 
% and an LOQ of 2.5 %, with peak current variations providing quan-
tifiable insights into redox activity of ferrous ions.

These metrics demonstrate the enhanced sensitivity of the combined 
multi-spectral approach compared to single-method analyses, allowing 
for precise detection even at low adulteration levels. The combined 
techniques not only increased reliability but also provided comple-
mentary insights into the chemical and structural properties of the 
adulterated samples.

3.8. Novelty and Mechanism

The novelty of this study lies in its integration and optimization of 
multiple advanced analytical techniques to establish a comprehensive 
framework for detecting food adulteration. Unlike previous approaches 
that rely on a single method, this research combines FTIR spectroscopy, 
Raman spectroscopy, UV–visible spectroscopy, cyclic voltammetry, and 
elemental mapping through SEM to enable precise and detailed char-
acterization of ferrous sulfate heptahydrate adulteration in turmeric 
powder. This multi-technique approach significantly enhances detection 
sensitivity and accuracy while providing complementary insights into 
the adulteration process. Furthermore, the study leverages advanced 
statistical methods, including Principal Component Analysis (PCA) and 
SIMCA modelling, to classify and differentiate between adulterated and 
unadulterated turmeric samples. These tools not only improve boundary 
determination but also quantify adulterant levels with greater predictive 
reliability. The integration of elemental mapping ensures the uniform 

distribution of adulterants within samples, adding another layer of rigor 
to the methodology.

The findings of this study highlight the potential of a multi-spectral 
approach for practical food safety applications. This method can be 
particularly beneficial in resource-limited settings, where access to 
advanced laboratory facilities may be restricted. By combining cost- 
effective spectroscopic techniques such as FTIR, Raman, UV–Vis, and 
elemental analysis with robust statistical models, the proposed approach 
offers a reliable and adaptable solution for on-site quality control. It 
enables quick detection of food adulterants, ensuring the authenticity 
and safety of food products and protecting consumer health.

This work is pioneering in its real-time detection potential, validated 
through independent datasets, showcasing practical applications for on- 
site quality control and food safety monitoring. By addressing a critical 
gap in the detection of ferrous sulfate heptahydrate adulteration, this 
study sets a benchmark for ensuring the safety and authenticity of 
turmeric powder in food and pharmaceutical industries.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
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Fig. 5. Acceptance plots for authenticity of sample test data and Acceptance plots for authenticity of sample training data.
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