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A B S T R A C T

The additive manufacturing of Ti6Al4V enables customized implant production with precise control over 
microstructure and mechanical properties. A key challenge in Ti6Al4V implants is stress shielding, which is 
alleviated by introducing porosity to match the implant’s Young’s modulus to that of bone. However, this re-
duces compressive strength. This study investigates enhancing compressive strength and osseointegration of 
porous Ti6Al4V by infiltrating it with hydroxyapatite (HA). Optimized cubic-porous Ti6Al4V specimens with 
square pores were fabricated using Laser Powder Bed Fusion (LPBF) and infiltrated with HA via the sol-gel 
method. Biocompatibility was assessed through corrosion rate analysis, cell attachment studies, and electro-
chemical analysis (EIS and PDP). XRD confirmed the presence of HA and other biominerals formed after the 
immersion of the Ti6Al4V/HA samples in SBF. Compression tests and degradation analysis were conducted by 
immersing the samples in simulated body fluid (SBF). The Ti6Al4V/HA specimens had compressive properties 
within the range of bone, with a maximum compressive strength of 239.4 ± 6.7 MPa and Young’s modulus of 
5.5 ± 0.1 GPa after immersion in simulated body fluid (SBF) for 7 days. The corrosion rate for the same sample 
was found to be 0.72 mm/year.

1. Introduction

Biomedical implants are gaining so much attention in the field of 
medical science and research, as they mimic the natural human bone 
and they are now used to treat heart conditions, bone fractures, and 
several other medical complexities [1,2]. Compared to the implants 
which are made up of ceramics and polymers, metallic implants offer 
greater strength, high resistance to corrosion and wear, and excellent 
biocompatibility properties [2]. On account of all these properties, 
metallic implants are used for the replacement of hip and knee as they 
are load-bearing bone structures [3]. The most common implant mate-
rials are stainless steel, titanium and its alloys (in particular Ti6Al4V), 
Co-Cr (Cobalt-Chromium), and Ni alloys [2]. Each of these implant 
materials has its advantages and disadvantages. For instance, stainless 
steel implants are not suitable for long-term use, particularly in 
load-bearing applications, due to their significant effects on the patient 

[4]. Amongst all these metallic implants, Ti6Al4V is preferred mostly as 
it exhibits a higher strength-to-weight ratio, has a lower density 
(4.43 g/cm3), provides greater corrosion resistance, and has excellent 
biocompatibility [4]. When comparing the mechanical properties, the 
compressive strength for bulk Ti6Al4V is around 200 MPa, and for 
cortical bones, the value is within the range of 15–200 MPa [3]. In the 
case of Young’s modulus, for human cortical bone, it is in the range of 
3–30 GPa, whereas for bulk Ti6Al4V it is around 110–120 GPa [3]. This 
mismatch of Young’s modulus between the human bone and implant 
causes the stress-shielding effect. It refers to a condition where the 
implant experiences a maximum amount of load, causing the nearby 
bone to experience a lesser amount of load. As a result of this, the bone 
begins to weaken over time which ultimately leads to implant loosening 
[3], bone resorption, and premature failure [5]. To eliminate this effect, 
pores are introduced into the bulk structure [5,6]. By the introduction of 
pores to a specific level and achieving the correct porosity percentage, 
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Ti6Al4V/HA and shifted the paradigm of the implant materials toward 
the potential metallic-ceramic biocomposite, by proving that it has both 
bio and mechanical compatibility making it suitable for load-bearing 
implant applications.
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[58] S. Rößler, A. Brückner, I. Kruppke, H.P. Wiesmann, T. Hanke, B. Kruppke, 3D 
plotting of silica/collagen xerogel granules in an alginate matrix for tissue- 
engineered bone implants, Materials 14 (2021) 830, https://doi.org/10.3390/ 
MA14040830.

[59] D.T. Reilly, A.H. Burstein, The elastic and ultimate properties of compact bone 
tissue, J. Biomech. 8 (1975) 393–405, https://doi.org/10.1016/0021-9290(75) 
90075-5.

[60] J. Vuola, R. Taurio, H. Göransson, S. Asko-Seljavaara, Compressive strength of 
calcium carbonate and hydroxyapatite implants after bone-marrow-induced 
osteogenesis, Biomaterials 19 (1998) 223–227, https://doi.org/10.1016/S0142- 
9612(97)00211-1.

A. Arivazhagan et al.                                                                                                                                                                                                                          Journal of Alloys and Compounds 1010 (2025) 177966 

15 


