International Journal of Pure and Applied Mathematics Volume 106 No. 6 2016, 85-92

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v106i6.9

A NOTE ON $P(r, m)$ Γ-SEMINEAR-RINGS

P. Chinnaraj¹, R. Perumal²

¹Department of Mathematics PSG Institute of Technology and Applied Research Coimbatore, 641062, Tamilnadu, INDIA ²Department of Mathematics SRM University Kattankulathur, 603203, Tamilnadu, INDIA

Abstract: In this paper, we consider a $P(r, m)$ Γ - seminear-rings and obtain equivalent conditions for such Γ - seminear-rings. we also obtain several characterizations of a $P(r, m)$ Γ - seminear-rings which are admitting mate functions.

AMS Subject Classification: 16Y60

Key Words: $P(r, m)$ Γ-seminear-ring, Mate function, ideal, idempotent, nilpotent

1. Introduction

The cocept of seminear-rings was introduced by B. V. Rootselaar in 1962 [15]. It is known that seminear-rings are common generalization of nearrings and semirings. The purpose of this paper is to establish the concept $P(r, m)$ Γ - seminear-rings and obtain some of their properties. In Section 2, we give preliminaries of Γ - seminear-rings which are used in the subsequent Sections. In Section 3, we give examples of $P(r, m)$ Γ - seminear-rings.

In Section 4, we discuss the properties of $P(1,1),P(1,2)$ and $P(2,1)$ Γ seminear-ring and obtain the necessary and sufficient conditions under which such Γ - seminear-rings posses mate function.

In Section 5, we prove equivalent conditions for $P(r, m)$ Γ - seminear-rings. we also obtain several characterisations of a $P(r, m)$ Γ - seminear-ring admitting mate functions, it is interesting to observe that a Γ - seminear-ring with a mate

Received: February 15, 2016 Published: April 14, 2016

 c 2016 Academic Publications, Ltd. url: www.acadpubl.eu

function is a $P(r, m)$ Γ - seminear-ring for all positive integers r and m if and only if it is a $P(1,2)$ Γ - seminear-ring. Throughout this paper, by a Γ seminear-ring we mean a right Γ - seminear-ring with an absorbing zero. We write ab to denote the product a.b for any two elements a, b in R .

2. Preliminaries

Definition 2.1. An algebraic structure $(R, +, .)$ is said to be a seminearring if

- (i) $(R, +)$ is a semi group
- (ii) $(R,.)$ is a semi group
- (iii) $(a + b)c = ac + bc$ for all $a, b, c \in R$.

Definition 2.2. Let R be an additive semigroup and Γ a nonempty set. Then R is called a right Γ - seminear-ring if there exists a mapping $R \times \Gamma \times R \rightarrow$ R satisfying the following conditions:

(i)
$$
(a+b)\gamma c = a\gamma c + b\gamma c
$$

(ii) $(a\gamma b)\beta c = a\gamma(b\beta c)$ for all $a, b, c \in R$ and $\gamma, \beta \in \Gamma$.

Definition 2.3. Let R be a Γ - seminear-ring under the mapping f: $R \times \Gamma \times R \to R$. a subsemigroup A of R is called a sub Γ - seminear-ring of R if A is a Γ - seminear-ring under the restriction of f to $A \times \Gamma \times A$.

Definition 2.4. A right Γ - seminear-ring R is said to have an absorbing zero ′0 ′ if

- (i) $a + 0 = 0 + a = a$
- (ii) $a\gamma 0 = 0\gamma a = 0$, hold for all $a \in R$ and $\gamma \in \Gamma$

Definition 2.5. $(R, +, \Gamma)$ is a right Γ - seminear-field if

- (i) $(R, +)$ is a semigroup
- (ii) (R^*, Γ) is a group $(R^*$ is R without addition zero, if it has one)
- (iii) $(a + b)\gamma c = a\gamma c + b\gamma c$ for all $a, b, c \in R, \gamma \in \Gamma$

Definition 2.6. A Γ - seminear-ring homomorphism between two right Γ - seminear -ring R and R' is a map $\phi: R \to R'$ satisfying

(i)
$$
\phi(a+b) = \phi(a) + \phi(b)
$$

(ii) $\phi(a\gamma b) = \phi(a)\gamma\phi(b)$ for all $a, b \in R$, and $\gamma \in \Gamma$

Definition 2.7. An ideal of a seminear-ring R is defined to be the kernel of a homomorphism of R. A left ideal of a seminear-ring R is defined to be an R-kernel of the R-semigroup $(R, +)$.

Definition 2.8. An element $a \in R$ is said to be

- (i) idempotent if $a\gamma a = a$.
- (ii) nilpotent if there exists a positive integer k such that $a^k = 0$.

Definition 2.9. A Γ-seminear-ring R is reduced if R has no non-zero nilpotent elements. We observe that as in ring theory, R has no non-zero nilpotent elements if $x \gamma x = x^2 = 0 \Rightarrow x = 0$.

We freely make use of the following notations.

- (i) $E =$ set of all idempotents of R
- (ii) $C(R) = (r \in R / r\gamma x = x\gamma r$ for all $x \in R$ and $\gamma \in \Gamma$) centre of R.

3. $P(r, m)$ Γ-Seminear-Rings

In this section we define $P(r, m)$ Γ - seminear-rings and give certain examples of such Γ - seminear-rings.

Definition 3.1. Let r,m be two positive integers. We say that R is a $P(r, m)$ Γ - seminear-ring if $x^r \gamma R = R \gamma x^m$ for all x in R and $\gamma \in \Gamma$.

Definition 3.2. A mate function $'f'$ of R is called a P_3 mate function if for every x in R, $x \gamma f(x) = f(x) \gamma x$.

Definition 3.3. A Γ - seminear-ring R is called Boolean if $x \gamma x = x^2 = x$ for all $x \in R$, $\gamma \in \Gamma$.

Definition 3.4. An idempotent $e \in E$ is said to be a central idempotent if $e \in C(R)$.

Definition 3.5. Let I be an index set and let $(R_i)_{i\in I}$ be a family of seminear-rings. $X_{i\in I}R_i$ with the component-wise defined operations "+" and "." is called the direct product $\prod_{i\in I} R_i$ of the seminear-rings $R_i (i \in I)$.

Definition 3.6. Let R be a Γ - seminear-ring. A non-empty subset A of R is called a Sub Γ - seminear-ring if A itself is a Γ - seminear-ring with respect to the same operations as in R.

Example 3.7. (a) Let $R = \{0, a, b, c, d\}$. We define the semigroup operations $'' +''$ and $''\gamma''$ in R as follows.

Then $(R, +, \Gamma)$ is a $P(r, m)$ Γ - seminear-ring for all positive integers r and $m, \gamma \in \Gamma$.

- (b) The direct product of any two seminear fields is a $P(r, m)$ Γ- seminear-ring for all positive integers r and m .
- (c) The Boolean $P(1,1)$ Γ seminear-ring is a $P(r,m)$ Γ seminear-ring for all positive integers r and m .

Proposition 3.8. Any homomorphic image of a $P(r, m)$ Γ - seminear-ring is a $P(r, m)$ Γ - seminear-ring. The proof is straight forward.

4. Properties of $P(1,1)$, $P(1,2)$, and $P(2,1)$ Γ-Seminear-Rings

Proposition 4.1. Let R be a $P(1,2)$ Γ - seminear-ring. If R is a either right normal or left normal Γ - seminear-ring then R has no nonzero nilpotent elements.

Proof. Since R is $P(1,2)$, $x\gamma R = R\gamma x^2$ for all $x \in R$, $\gamma \in \Gamma$. Since R is right normal, $x \in x\gamma R$. Then for every $x \in R$ we get $x = r\gamma x^2$ for some r in $R, \gamma \in \Gamma$. Thus $x^2 = 0 \Rightarrow x = r\gamma 0 = 0$. Hence R has no non-zero nilpotent elements. Proof is similar when R is left normal Γ - seminear-ring.

Definition 4.2. The Γ - seminear-ring R has strong IFP if and only if for all ideals I of R, $a\gamma b \in I \Rightarrow a\gamma x\gamma b \in I$ for $a, b \in R$ and for all $x \in R$, $\gamma \in \Gamma$.

Proposition 4.3. If R is a $P(1,2)$ or a $P(2,1)$ Γ - seminear-ring then R has strong IFP.

Proof. Let $a\gamma b \in I$ where I is any ideal of R and let $x \in R$, $\gamma \in \Gamma$.

Case (i) Let R be a $P(1,2)$ Γ - seminear-ring. Since I is an ideal of R, (i.e) $R\Gamma I \subseteq I$. Now $a\gamma x \in a\gamma R = R\gamma a^2 \Rightarrow a\gamma x = y\gamma a^2$ for some $y \in R \Rightarrow a\gamma x\gamma b =$ $(a\gamma x)\gamma b = (y\gamma a^2)\gamma b = (y\gamma a)(a\gamma b) \in R\Gamma I \subseteq I \Rightarrow a\gamma x\gamma b \in I.$

Case (ii) Let R be a $P(2,1)$ Γ - seminear-ring. Since I is an ideal of R, (i.e) $I\Gamma R \subseteq I$. Now $x\gamma b\gamma R\gamma b = b^2\gamma R \Rightarrow x\gamma b = b^2\gamma y'$ for some $y' \in R \Rightarrow$ $a\gamma x\gamma b = a\gamma(x\gamma b) = a\gamma(b^2\gamma y') = (a\gamma b)(b\gamma y') \in I\Gamma R\Gamma I \Rightarrow a\gamma x\gamma b \in I.$ Hence R has strong IFP.

Proposition 4.4. In a $P(1,2)$ Γ - seminear-ring, $E \subseteq C(R)$

Proof. Since $0 \in E$, it is non-empty. Let $e \in E$, As R is $P(1, 2)$, $e \gamma R =$ $R\gamma e^2 \Rightarrow e\gamma R = R\gamma e \Rightarrow e\gamma R\gamma e = e\gamma(R\gamma e) = e\gamma(e\gamma R) = e^2\gamma R = e\gamma R$. Hence $e\gamma R = e\gamma R\gamma e = R\gamma e$. For $x \in R$, $\gamma \in \Gamma$ there exist $u, v \in R$ such that $x\gamma e = e\gamma u\gamma e$ and $e\gamma x = e\gamma v\gamma e$. These imply $e\gamma x\gamma e = e\gamma (x\gamma e) = e\gamma (e\gamma u\gamma e)$ $e\gamma u\gamma e = x\gamma e$ and $e\gamma x\gamma e = (e\gamma x)\gamma e = (e\gamma v\gamma e)\gamma e = e\gamma x$. Thus $e\gamma x = e\gamma x\gamma e =$ $x\gamma e$ for all $x \in R, \gamma \in \Gamma$. Therefore $E \subseteq C(R)$.

Remark 4.5. The results from 4.3 and 4.4 hold good for a $P(2,1)$ Γ seminear-ring also.

Lemma 4.6. If R has a mate function f then R is an left (right) normal Γ - seminear-ring.

Proof. Since R has a mate function f for all $x \in R$, $\gamma \in \Gamma$, $x = x \gamma f(x) \gamma x \in \Gamma$ $R\gamma x(x\gamma R)$. Obviously then R is a left (right) normal Γ - seminear-ring.

5. Equivalent Conditions for $P(r, m)$ Γ-Seminear-Rings

Theorem 5.1. Let R be a Γ -seminear-ring with a mate function f. Then the following statements are equivalent.

- (*i*) *R* is $P(1, 2)$
- (ii) $E \in C(R)$
- (iii) R is $P(2, 1)$.

Proof. (ii) \Rightarrow (i) : For $a \in R$, $a\gamma x \in a\gamma R$ for all $x \in R$, $\gamma \in \Gamma$, and since $E \in C(R)$,

$$
a\gamma x = a\gamma f(a)\gamma a\gamma x = a\gamma(f(a)\gamma a\gamma x) = a\gamma x\gamma f(a)\gamma a
$$

=
$$
a\gamma x\gamma f(a)\gamma a\gamma(f(a)\gamma a) = a\gamma x\gamma f(a)\gamma(f(a)\gamma a)\gamma a
$$

(since $f(a)\gamma a \in E$). Therefore

$$
a\gamma x = aa\gamma x\gamma f(a)^2 \gamma a^2 \in R\gamma a^2 \Rightarrow a\gamma R \subseteq R\gamma a^2. \tag{A}
$$

Also

$$
x\gamma a^2 \in R\gamma a^2 \Rightarrow x\gamma a^2 = x\gamma a\gamma a = (x\gamma a)(a\gamma f(a)\gamma a)
$$

=
$$
(x\gamma a\gamma a\gamma f(a))\gamma a = a\gamma f(a)\gamma x\gamma a^2 \in a\gamma R \Rightarrow R\gamma a^2 \subseteq a\gamma R.
$$
 (B)

From (A) and (B) we get $a\gamma R = R\gamma a^2$ for all a in $R, \gamma \in \Gamma$ and (i) follows.

Proof of $(i) \Rightarrow (ii)$ and that of $(iii) \Rightarrow (ii)$ are taken care of the Proposition 4.4.

 $(ii) \Rightarrow (iii)$ For $a \in R$, $x\gamma a \in R\gamma a$ for all $x \in R$, $\gamma \in \Gamma$ and since $E \subseteq C(R)$,

$$
x\gamma a = x\gamma a\gamma f(a)\gamma a = (x\gamma a\gamma (f(a))\gamma a = a\gamma f(a)\gamma x\gamma a
$$

= $a\gamma f(a)\gamma a\gamma f(a)\gamma x\gamma a = a\gamma a\gamma f(a)\gamma f(a)\gamma x\gamma a$

 $(since f(a) \gamma a \subseteq E)$

$$
x\gamma a = a^2 \gamma f(a)^2 \gamma x \gamma a \in a^2 \gamma R \Rightarrow R\gamma a \subseteq a^2 \gamma R. \tag{C}
$$

Also

$$
a^{2}\gamma x \in a^{2}\gamma R \Rightarrow a^{2}\gamma R = a\gamma a\gamma x = a\gamma f(a)\gamma a\gamma a\gamma x = a\gamma ((f(a)\gamma a)\gamma a\gamma x)
$$

$$
= a\gamma (a\gamma x\gamma f(a)\gamma a) = a^{2}\gamma x\gamma f(a)\gamma a = R\gamma a \Rightarrow a^{2}\gamma R \subseteq R\gamma a. \quad (D)
$$

From (C) and (D) we get $R\gamma a = a^2 \gamma R$ for all a in R and (iii) follows.

Remark 5.2. Let R admit a mate function f and let $E \subseteq C(R)$, we observe that for every $x \in R$, $x = x \gamma f(x) \gamma x = f(x) \gamma x^2$. Incidentally we have $x^2 = 0 \Rightarrow x = 0$. Hence R has no non-zero nilpotent elements.

Theorem 5.3. Let R admit a mate function f. Then R is a $P(r, m)$ Γ seminear-ring for all positive integers r and m if and only if R is a $P(1,2)$ Γ seminear-ring.

Proof. If part: Since R is a $P(1,2)$ Γ - seminear-ring $\Rightarrow E \subseteq C(R)$ (by Proposition 4.4) Let r, m be any two positive integers. Let $a \in x^r \gamma R$. Therefore $a = x^r \gamma y$ for some y in R. Now $a = (x \gamma f(x) \gamma x)^r \gamma y = x^r \gamma (f(x) \gamma x)^r \gamma y$ (since $f(x)\gamma x \in E \subseteq C(R) = x^r \gamma(f(x)\gamma x) \gamma y = x^r \gamma y \gamma f(x) \gamma x$ (since $E \subseteq C(R)$) = $x^r \gamma y \gamma(f(x))^m x^m$ (since $f(x) \gamma x \in E$) = $x^r \gamma y \gamma(f(x))^m x^m$ (since $E \subseteq C(R)$) = $(x^r \gamma y \gamma (f(x))^m) \gamma x^m \in R \gamma x^m$. Therefore $x^r \gamma R \subseteq R \gamma x^m$. In a similar fashion we get $R\gamma x^m \subseteq x^r \gamma R$. Hence $x^r \gamma R = R\gamma x^m$ and R is a $P(r, m)$ Γ - seminearring. The converse is obvious - it follows by taking $r = 1$ and $m = 2$. We furnish below a characterization of $P(r, m)$ Γ - seminear-rings.

Theorem 5.4. Let R be a Γ - seminearring with a mate function f. Then R is $P(r, m)$ if and only if for every $x \in R$, $\gamma \in \Gamma$, there exists a central idempotent e such that $R\gamma x = R\gamma e$.

Proof. For the only if part, let $x \in R, \gamma \in \Gamma$. Then $R\gamma x = R\gamma f(x)\gamma x = R\gamma e$ where $e = f(x)\gamma x \in E$. But in a $P(r, m)$ Γ- seminear-ring $E \subseteq C(R)$ (by Proposition 4.4). Therefore $R\gamma x = R\gamma e$ where e is a central idempotent. For the if part, we need only to show that $E \subseteq C(R)$ (in view of Theorems 5.1) and 5.3). Let $e_1 \in E$. Now $R\gamma e_1 = R\gamma e$ for some central idempotent e. Now $e_1 = e_1^2 \in R\gamma e_1 (= R\gamma e) \Rightarrow e_1 = y\gamma e$ for some $y \in R, \gamma \in \Gamma$. Therefore

$$
e_1 = (y\gamma e)\gamma e = e_1 \gamma e. \tag{1}
$$

Also $e = e^2 \in R\gamma e (= R\gamma e_1) \Rightarrow e = u\gamma e_1$ for some $u \in R$, $\gamma \in \Gamma$. Therefore

$$
e = u\gamma e_1 = (u\gamma e_1)\gamma e_1 = e\gamma e_1.
$$
\n⁽²⁾

Since $'e'$ is a central idempotent

$$
e\gamma e_1 = e_1 \gamma e. \tag{3}
$$

From (1), (2) and (3) we get $e_1 = e_1 \gamma e = e \gamma e_1 = e$. Therefore $e_1(e)$ is a central idempotent. Thus $E \subseteq C(R)$. Therefore R is a $P(r, m)$ Γ - seminearring.

References

- [1] Balakrishnan R. and Perumal R., Left Duo Seminear-rings, Scientia Magna, 8(3), 115 -120, (2012).
- [2] Booth G. L. and Groenewald N. J., On strongly prime near-rings, Indian Journal of Mathematics, $40(2)$, 113 - 121, (1998).
- [3] Jat J.L. and Choudary S.C., On left bipotent near-rings, *Proc. Edin. Math. Soc.*, 22, 99 - 107, (1979).
- [4] Javed AHSAN, Seminear-rings Characterized by their s-ideals. I Proc. Japan Acad, 71(A), $101 - 103$, (1995).
- [5] Javed AHSAN, Seminear-rings Characterized by their s-ideals. II Proc. Japan Acad, $71(A)$, 111 - 113, (1995).
- [6] Park. Y. S and Kim. W. J, On Structures of Left Bipotent Near-rings, Kyungbook Math. $J, 20(2), 177 - 181, (1980).$
- [7] Pellegrini Manara S., On regular medial near-rings,Boll. Unione Mat. Ital., VI Ser., D, Algebra Geom, 6(1985), 131 - 136.
- [8] Pellegrini Manara S., On medial near-rings, Near-Rings and Near fields, Amsterdam, North Holland, 199 - 210, (1987).
- [9] Perumal R., Balakrishnan R. and Uma S., Some Special Seminear-ring Structures, Ultra Scientist of Physical Sciences., 23(2), 427 - 436, (2011).
- [10] Perumal R., Balakrishnan R. and Uma S., Some Special Seminear-ring Structures II, Ultra Scientist of Physical Sciences., $24(1)$, 91 - 98, (2012).
- [11] Perumal R. and Balakrishnan R., Left Bipotent Seminear-rings, International Journal of Algebra., $6(26)$, 1289 -1295, (2012).
- [12] Pilz Günter, Near-Rings, North Holland (1983), Amsterdam.
- [13] Shabir. M and Ahamed. I, Weakly Regular Seminearrings International Electronic Journal of Algebra,2(2007), 114 - 126.
- [14] Weinert H.J., Seminear-rings, Seminearfield and their Semigroup Theoretical Background, Semigroup Forum, 24, 231 - 254, (1982).
- [15] Willy G. van Hoorn and van Rootselaar R., Fundamental notions in the theory of Seminearrings, Compositio Math, 18, 65 - 78, (1967).
- [16] Weinert H.J., Related Representation theorems for Rings, Semi-rings, Near-rings and Seminear-rings by Partial Transformations and Partial Endomorphisms, Proceedings of the Edinburgh Mathematical Society, 20 , $307 - 315$, $(1976-77)$.