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Abstract: This study was conducted to investigate the horizontal thrust of vertically curved reinforced concrete (VCRC) beams. The middle
portion of beam is curved like an arch; such beams are said to be vertically curved beams. In this investigation, 15 VCRC beams were cast, of
which, 8 beams had a constant rise of 200mm and varying chord length of curved portion from 490mm to 1832mm, and the remaining 7
beams had a constant rise of 300mm and varying chord length of curved portion from 690mm to 1844mm. The vertically curved portions of
VCRC beams are in a parabolic shape. Tie bars were used to arrest longitudinal (horizontal) displacement while testing the VCRC beams.
VCRC beams were subjected to a gradually increased central concentrated load until collapse occurred. The behavior of the beams was
intensely observed from the beginning until collapse occurred. The first crack load, ultimate loads, deflection, and horizontal displacement
have been recorded. The force in the tie bars was calculated based on the measured horizontal displacement. The total force in the tie
bars is the available horizontal thrust at each end of a VCRC beam. Theoretical horizontal thrust of VCRC beams is calculated based on
the force method. These theoretical thrust values and experimental results have been compared. The average value of the ratio of theo-
retical horizontal thrust to experimental horizontal thrust is found to be very satisfactory. DOI: 10.1061/(ASCE)SC.1943-
5576.0000418.© 2019 American Society of Civil Engineers.
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Introduction

Structural elements such as slabs, beams, lintel beams, columns,
foundations, and arches are made of reinforced concrete (RC)
because of its strength and durability. Various aspects of the history
and development of the arch bridge have been discussed (Billington
1977). RC arches can be found in many structures, but they have
been mainly used historically in bridge construction because of the
superiority of the arch shape that allows spanning over large distan-
ces (Hamed et al. 2015). The arch is significant because it is pre-
dominantly subjected to compressive force while resisting the
externally applied load. Utilizing the arch configuration in structural
elements made with reinforced concrete has many advantages relat-
ing to the distance it can span and the loads it can carry. Nowadays,
from an aesthetic point of view, arches are provided in combination
with the straight portion of beams. This kind of combination of the
straight portion and arch portion is named by the authors as verti-
cally curved reinforced concrete (VCRC) beams. The authors
attempt to study the behavior of VCRC beams is the first of its kind.
The VCRC beams also transmit horizontal thrust due to the arch
action of the curved portion. A significant interaction between
shear, bending, and chord deviation forces occurs in arch-shaped
RC members, influencing their strength and behavior (Campana

et al. 2014b). In order to take care of horizontal thrust, tie bars were
used in this investigation.

Research Significance

Godoy (2004) published an article titled Arches: A Neglected
Topic in Structural Analysis Courses. This in-depth investigation
highlights a deep rift between the modern level of development of
arch theory and the level of presentation of this theory in existing
material on structural analysis. Amde et al. (2002) reported on the
stability tests of sandwich composite elastica arches. They inves-
tigated the novel sandwich elastica arch made by buckling its
individual layers into shape, and then laminating them in place.
Shankar Nair (1986) reported a method of computing the planar
elastic buckling loads, natural frequencies, and corresponding
mode shapes for arches and tied arches. The procedure involves
linear elastic analysis with multiple loadings to obtain a simpli-
fied flexibility matrix, manual development of a stability matrix
(for buckling) or mass matrix (for vibration), and solution of an
eigenvalue equation.

Wang andWang (2002) reformulated the differential equation
in a coordinate system comprising the arc length and tangent
angle and provided a solution that relates the arc length to the tan-
gent angle of the arch for the determination of the submerged fu-
nicular arch. Chai and Kunnath (2003) reported that a closed-
form solution for the shape of a submerged funicular arch is
extended to Cartesian coordinates since it is more convenient
from a practical design. RC arches subjected to bending or shear
traditional design methods used for straight members were not
applicable due to deviation forces developing at the curved
chords carrying compression and tension, which were not always
accounted in design codes (Campana et al. 2014a).

The main objective of this investigation is to develop a method
to predict the horizontal thrust at hinged supports when VCRC
beams are subjected to a gradually increased central concentrated
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load. Sufficient methods are available for the analysis of arches.
Fixed arches are more commonly encountered than hinged arches
because all masonry arches are considered fixed arches. In order to
analyze these kinds of arches, the well-known analysis methods,
such as Castigliano’s, elastic center, or column analogy, can be con-
veniently adopted. However, there are no theories or literature
available to predict the horizontal thrust of VCRC beams. Hence,
an experimental and theoretical investigation was originated.

Experimental Investigation

Vertically Curved Reinforced Concrete Beam Details

Fifteen parabolic VCRC beams with a rectangular cross section
width of 200mm, depth of 150mm, and effective span of
1,900mm were cast and tested. Out of these, eight beams were
cast with a constant rise of 200mm, and the remaining seven
beams were cast with a constant rise of 300mm. The rise (r),
length of the straight portion on one side (L1), chord length of the
curved portion (L2), and beam designations of VCRC beams are
given in Table 1. The rise-to-span ratio of the arch was chosen to
fall within a range of typical values reported from existing RC
arches (Billington 1979; Dym and Williams 2011; Salonga and
Gauvreau 2014). The high yield strength deformed (HYSD) bars
were used as reinforcement bars. All VCRC beams consisted of
the same reinforcement. Details are presented in Fig. 1.

Fabrication of Molds and Casting of Vertically Curved
Reinforced Concrete Beams

All VCRC beams were combinations of parabolically curved and
straight portions. The mold preparation for the curved portion was
cumbersome; initially, coordinates of curves were determined for
the parabolic curved portion. The equation of the parabolic line of
the curved portion is

y ¼ 4rx
L22

L2 � xð Þ (1)

where L2 = chord length; r = central rise; and y1, y2, … = vertical
coordinates corresponding to the horizontal coordinates x1, x2, …,
respectively. From Eq. (1), the various coordinate points, y1, y2,…,
were calculated, and ordinates were erected on the base line corre-
sponding to x1, x2,…, respectively, as presented in Fig. 2.

The coordinate points corresponding to the center line of the
curved portion were plotted on a horizontal base plate, and with
respect to this center line, flexible plywood pieces were fixed defin-
ing the inner and outer sides of the curved portion. The fabricated
mold of VCRC beams is presented in Fig. 3. To maintain the homo-
geneity of concrete, all the beams were cast horizontally and tested
vertically (Ramakrishnan 2015). The reinforcement was placed
inside the mold on cover blocks of size 20mm. TheM20 grade con-
crete has been mixed in a concrete mixer, put inside the mold in
three layers, and compacted well using a needle vibrator. Twenty-
four hours after casting, the beams were demolded, and the VCRC
beams were cured under wet gunny bags for 28 days. The gunny

Table 1. Experimental results of VCRC beams

Serial number Beam r (mm) L1 (mm) L2 (mm) L2:L (Wcr)E (kN) (Wu)E (kN) Central deflection (mm) d t (mm) HE (kN)

1 PP0C400H 200 705 490 0.258 16 44 1.034 0.97 154.102
2 PP0C600H 200 614 672 0.354 18 58 0.754 1.23 194.244
3 PP0C800H 200 520 860 0.453 20 70 0.568 1.50 237.580
4 PP0C1000H 200 424 1,052 0.554 24 88 0.438 2.03 320.791
5 PP0C1200H 200 328 1,244 0.655 26 96 0.372 2.45 388.199
6 PP0C1400H 200 230 1,440 0.758 30 106 0.306 2.61 412.550
7 PP0C1600H 200 133 1,634 0.860 32 114 0.255 2.82 446.729
8 PP0C1800H 200 34 1,832 0.964 34 128 0.21 3.11 493.037
9 PP1C600H 300 605 690 0.363 20 64 0.602 1.05 166.643
10 PP1C800H 300 511 878 0.462 24 86 0.503 1.37 216.323
11 PP1C1000H 300 416 1,068 0.562 28 106 0.393 1.73 274.515
12 PP1C1200H 300 320 1,260 0.663 32 120 0.334 2.08 329.969
13 PP1C1400H 300 223 1,454 0.765 36 138 0.259 2.45 388.090
14 PP1C1600H 300 125 1,650 0.868 40 156 0.206 2.78 440.898
15 PP1C1800H 300 28 1,844 0.971 46 174 0.189 3.09 488.430

Fig. 1. Reinforcement details for VCRC beam.
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bags were watered thrice a day, taking special care to see that all the
parts were watered uniformly.

Loading Setup of Vertically Curved Reinforced
Concrete Beams

All the VCRC beams were tested with tie bars to minimize the lon-
gitudinal displacement and to promote the arch action in the curved
portion. Initially, VCRC beams were placed over the steel support
with 100-mm bearings on both ends of the beam. The twomild steel
rods 32mm in diameter were used as tie bars; the ends of these rods
were threaded. The steel plates of 16mm thickness were placed at
the beam ends, these plates having two holes 34mm in diameter to
accommodate the tie bars. Tie bars were also passed through the
holes provided in the steel plates. Tightening the four nuts on each
of the tie bars and fastening the two tie bars with steel plates at the
ends of the beam ensured that the longitudinal displacement of
VCRC beams was arrested. All the VCRC beams were tested up to
failure in a steel self-straining loading frame of capacity 750kN
(Murugesan and Narayanan 2017, 2018). The gradually increased
central concentrated load was applied using a hydraulic jack in
increments of 2 kN until collapse of the beam occurred, and it was
measured using a calibrated proving ring. Horizontal displacements
were measured by means of one dial gauge fixed at each end of a
VCRC beam. Deflections of beams were measured by linear

variable differential transducer (LVDT) at L/8, L/4, and L/2 from
each support. A test setup of VCRC beams is presented in Fig. 4.

Results of Experimentation

Strength and Deflection of Vertically Curved Reinforced
Concrete Beams

The ratio of chord length (L2) to effective span (L) varied from
0.258 to 0.964 for a 200-mm rise and from 0.363 to 0.971 for
300-mm rise. The first crack load, ultimate load, precrack central
deflections corresponding to the load of 8 kN, horizontal displace-
ment, and horizontal thrust (force in the tie bars) of VCRC beams
are given in Table 1.

The first crack load and ultimate load-carrying capacity of
VCRC beams were found to increase as the L2:L increased, because
there was more contribution by the arch action of the vertically
curved portion. The load-carrying capacity of beams increased with

Fig. 3. Fabricated mold for VCRC beam.

Fig. 4. Testing arrangements of VCRC beamwith tie bars.

Fig. 2. Coordinate points for VCRC beam.
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the increase in the rise of the curved portion of VCRC beams. This
can be attributed to the increase in arch action with a higher rise
(Ramakrishnan and Arunachalam 2016). The variation of central
deflection with L2:L in VCRC beams is shown in Fig. 5. The central
vertical deflection of VCRC beams decreased as the ratio of L2:L
increased because the vertical load transmitted by the curved portion
to the straight portion was closer to the supports. In addition, for a
given L2:L, the central deflection decreases as the rise increases.

Crack Pattern of Vertically Curved Reinforced
Concrete Beams

The tested VCRC beams had the L2:L ratio less than 0.453, and flex-
ural cracks developed initially on either side of the junctions
between the straight portion and curved portion. When the load was
increased, these cracks widened. Finally, the beams failed due to
the formation of horizontal cracks in the curved portion at the ulti-
mate load. The beams that had the L2:L ratio greater than 0.453
failed due to vertical cracks that appeared in the curved portion, and
very thin horizontal cracks were seen in the curved portion. These
beams failed due to the widening of vertical cracks, because the
spreading of the curved portion had been arrested by tie bars to a
greater extent. The crack patterns of 200mm and 300mm rise in
VCRC beams are presented in Figs. 6 and 7.

Horizontal Thrust in Vertically Curved Reinforced
Concrete Beams

A VCRC beam transmits horizontal force at the ends because of the
arch action by the curved portion. In order to prevent this horizontal
force, two tie bars with threaded ends were placed symmetrically,
one on each side of the beam, and anchored at the ends using
nuts. The sum of the displacements measured at the ends of beams
was the axial deformation in the two tie bars. Based on this, the hori-
zontal force in the two tie bars was calculated. The horizontal force
in the two tie bars is equal to the horizontal thrust at each end of the
VCRC beam. The horizontal force in the tie bars is

HE ¼ d tAtEt

Lt
(2)

where d t = elongation of the tie bars, which is equal to the sum of
the measured displacements of the two ends of beams; At = total area
of the cross section of tie bars of 1608.49 mm2 (2 numbers of 32mm

diameter); Et = Young’s modulus of the materials of the tie bars
2� 105N/mm2; and Lt = length of tie bars (length of beam plus
twice the thickness of one end plate) 2,032mm. The experiment hor-
izontal thrust values at the ultimate load for VCRC beams are listed
in Table 1.

Theoretical Calculation for Horizontal Thrust

Theoretical calculation for the horizontal thrust of VCRC beams is
based on the force method. The force method is very attractive
because it has a clear physical meaning, which is based on a conven-
ient and well-ordered procedure of calculation of displacements of
deformable structures, and presently, this method has been brought
to elegant simplicity and perfection (Karnovsky 2012). Primary
unknowns represent reactions (forces and/or moments), which arise
in redundant constraints. Unknown internal forces also may be
treated as primary unknowns. The primary system is such a struc-
ture, which is obtained from the given one by eliminating redundant
constraints and replacing them by primary unknowns. Let the pri-
mary unknown X1 be the horizontal reaction of the right support.
The primary system is given in Fig. 8(a); this structure is subjected
to given loads as well as the force X1.

The equation of the force method is

d 11X1 þ D1p ¼ 0

;X1 ¼ �D1p

d 11
(3)

where d 11 = coefficient that represents the displacement of the pri-
mary structure along the direction of unknown X1 due to the unit pri-
mary unknown given in Fig. 8(b). This displacement is always posi-
tive, that is, d 11> 0. The term d 11X1 represents the displacement
along the direction of unknown X1 due to the action of the real
unknown X1. The free term D1 p represents displacement in the pri-
mary system along the direction of unknown X1 due to the action of
the actual load. Displacement caused by applied loads D1 p is called
load term, as presented in Fig. 8(c). The left part, d 11X1þD1 p, repre-
sents the total displacement along the direction of unknown X1 due to
its action and a given load. Total displacement, which occurs in the
primary structure, is caused by the primary unknown, and the applied
load equals zero (Karnovsky and Lebed 2004, 2010). A VCRC beam
with tie bars is a structure with one redundant constraint. The internal
force in tie bars may be treated as the primary unknown X1. In this
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Fig. 5. Central deflections for various L2:L ratios under 8 kN load.
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case, the primary system represents a simply supported curvilinear
rod. The coefficient d 11 is a mutual linear displacement due to the unit
force X1 = 1, and D1 p is a mutual linear displacement in the tie due to
the given load. The equation means that the mutual linear displace-
ment of any two sections, which belongs to the tie, caused by primary
unknownX1 and a given load, is equal to zero.

Modal Calculation for Horizontal Thrust in a Vertically
Curved Reinforced Concrete Beam

The ends of a VCRC beam are assumed to be hinged, because the
horizontal thrusts are developed by tie rods. For analysis of VCRC
beams, the shape of the beam is converted into equivalent arches

with an end moment (Ms = WL1/2). Consider the beam PP1C1000H
presented in Fig. 9(a). The forces and moments acting on the curved
portion of a VCRC beam are presented in Fig. 9(b). The flexural
stiffness of the cross section of the curved portion is EI. The equa-
tion of the parabolic line of the curved portion is given in Eq. (1).

It is necessary to find the distribution of internal forces. The
curved portion under investigation is statically indeterminate to
the first degree. The primary system is presented in Fig. 9(d). The
primary unknown X1 is the horizontal reaction of the right sup-
port. Let us subdivide the arch into segments with equal horizon-
tal projections. The span of the curved portion is divided into ten
equal parts; the specified points are labeled 0–10 as given in
Fig. 9(c).

Fig. 6. Crack pattern of 200-mm rise VCRC beams.

© ASCE 04019005-5 Pract. Period. Struct. Des. Constr.

 Pract. Period. Struct. Des. Constr., 2019, 24(2): 04019005 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

W
es

te
rn

 S
yd

ne
y 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
02

/0
2/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Fig. 7. Crack pattern of 300-mm rise VCRC beams.

Fig. 8. Application of the force method: (a) primary system; (b) primary systemwith unit load; and (c) displacement due to applied load.
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The following formulas for the calculation of trigonometric
functions of the angle between the tangent to the curved portion and
x-axis have been used. Results of the calculations are presented in
Table 2.

tan w ¼ dy
dx

¼ 4r L2 � 2xð Þ
L22

; cos w ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan 2w

p ;

sin w ¼ cos w tan w (4)

The length of the chord (lc) between points is calculated using
the following formula for all segments of beam PP1C1000H.

lcn;n�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � xn�1ð Þ2 þ yn � yn�1ð Þ2

q
(5)

Fig. 9. Primary system of PP1C1000H beam: (a) VCRC beam PP1C1000H; (b) forces in curved portion; (c) segments of curved portion; and
(d) primary system of PP1C1000H.

Table 2. Internal forces due to the unit and loaded states of beam PP1C1000H

Points

Coordinates

tanf cosf sinf

Unit state (H = 1) Loaded state in terms ofW

x (mm) y (mm) M1 (kN·mm) Q1 (kN) N1 (kN) Mp (kN·mm) Qp (kN) Np (kN)

0 0 0 1.12 0.67 0.75 0 −0.75 −0.67 208 0.33 −0.37
1 107 108 0.90 0.74 0.67 −108 −0.67 −0.74 261.4 0.37 −0.33
2 214 192 0.67 0.83 0.56 −192 −0.56 −0.83 314.8 0.42 −0.28
3 320 252 0.45 0.91 0.41 −252 −0.41 −0.91 368.2 0.46 −0.21
4 427 288 0.23 0.98 0.22 −288 −0.22 −0.98 421.6 0.49 −0.11
5 534 300 0.00 1.00 0.00 −300 0.00 −1.00 475 0.50 0.00
6 641 288 −0.23 0.98 −0.22 −288 0.22 −0.98 528.4 0.49 0.11
7 748 252 −0.45 0.91 −0.41 −252 0.41 −0.91 581.8 0.46 0.21
8 854 192 −0.67 0.83 −0.56 −192 0.56 −0.83 961.2 0.42 0.28
9 961 108 −0.90 0.74 −0.67 −108 0.67 −0.74 688.6 0.37 0.33
10 1,068 0 −1.12 0.67 −0.75 0 0.75 −0.67 742 0.33 0.37

Fig. 10. Positive directions of internal forces in the (a) unit state; and
(b) loaded state.
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Internal Forces in the Unit State

The curved portion is subjected to unit primary unknown X1 = 1.
The horizontal reaction H = 1 and the positive directions of internal
forces of moment (M1), shear (Q1), and axial force (N1) are given in
Fig. 10(a). Internal forces at all the segmental points are listed in
Table 2.

M1 ¼ �1y; Q1 ¼ �1sin w ; N1 ¼ �1cos w (6)

Internal Forces in the Loaded State

Due to the applied load,W, the positive directions of internal stress
resultants of moment (Mp), shear (Qp), and axial force (Np) are
given in Fig. 10(b). They were calculated using the following
expressions. Internal forces at all the segmental points due to the
loaded state are listed in Table 2.

Mp ¼ Ms þWx
2

; Qp ¼ Wcos w
2

;

Np ¼ �Wsin w
2

(7)

The displacements due to unit load and loaded terms are calcu-
lated by Maxwell-Mohr formulas. If the shear and axial force are
neglected, because they are very small, then the Simpson formula is
applied for the calculation of displacement. The displacement due
to unit load (d 11) caused by primary unknown X = 1 equals

d 11 ¼
ð
M1M1

EI
ds ¼

X10
1

lc
6EI

a21 þ 4c21 þ b21
� � ¼ 54641471:15

EI

(8)

Displacement in the primary system (D1p) caused by the applied
load is given by

D1P ¼
ð
M1MP

EI
ds ¼

X10
1

lc
6EI

a1ap þ 4c1cp þ b1bpð Þ

¼ �119780361:26 W
EI

(9)

where Mp = MsþW; x / 2 = bending moments at any point of the
curved portion in the loaded state; a1, ap = ordinates of the bending
moment diagramsM1 andMp at the extreme left end of the portion;
b1, bp = ordinates of the same bending moment diagrams at the

Table 3. The moment values for each element

Portion lc (mm)

Unit state (H = 1) Loaded state in terms ofW

a1 c1 b1 (lc/6)· a21 þ 4c21 þ b21
� �

ap cp bp (lc/6)· a1ap þ 4c1cp þ b1bp
� �

(0–1) 151.89 0 −54 −108 590,544.07 208.0 234.7 261.4 −1,998,007.44
(1–2) 135.88 −108 −150 −192 3,137,101.06 261.4 288.1 314.8 −5,922,664.19
(2–3) 122.50 −192 −222 −252 6,074,037.98 314.8 341.5 368.2 −9,319,796.89
(3–4) 112.70 −252 −270 −288 8,228,309.30 368.2 394.9 421.6 −12,034,916.69
(4–5) 107.47 −288 −294 −300 9,290,743.16 421.6 448.3 475.0 −14,170,575.75
(5–6) 107.47 −300 −294 −288 9,290,743.16 475.0 501.7 528.4 −15,846,365.82
(6–7) 112.70 −288 −270 −252 8,228,309.30 528.4 555.1 581.8 −16,873,714.36
(7–8) 122.50 −252 −222 −192 6,074,037.98 581.8 771.5 961.2 −20,748,553.09
(8–9) 135.88 −192 −150 −108 3,137,101.06 961.2 824.9 688.6 −17,071,873.54
(9–10) 151.89 −108 −54 0 590,544.07 688.6 715.3 742.0 −5,793,893.48
Total 54,641,471.15 −119,780,361.26

Table 4. Comparison of horizontal thrust values of VCRC beams at ultimate loads

Beam r (mm) Wu (kN) Theoretical thrust in terms ofWu (kN) Theoretical thrust [HT (kN)] Experimental thrust [HE (kN)] HT:HE

PP0C400H 200 44 3.196 140.624 154.102 0.913
PP0C600H 200 58 3.106 180.148 194.244 0.927
PP0C800H 200 70 3.058 214.060 237.580 0.901
PP0C1000H 200 88 3.230 284.240 320.791 0.886
PP0C1200H 200 96 3.328 319.488 388.199 0.823
PP0C1400H 200 106 3.385 358.810 412.550 0.870
PP0C1600H 200 114 3.421 389.994 446.729 0.873
PP0C1800H 200 128 3.432 439.296 493.037 0.891
PP1C600H 300 64 2.112 135.168 166.643 0.811
PP1C800H 300 86 2.072 178.192 216.323 0.824
PP1C1000H 300 106 2.192 232.352 274.515 0.846
PP1C1200H 300 120 2.242 269.040 329.969 0.815
PP1C1400H 300 138 2.271 313.398 388.090 0.808
PP1C1600H 300 156 2.291 357.396 440.898 0.811
PP1C1800H 300 174 2.343 407.682 488.430 0.835
Average — — — — — 0.856
Standard deviation — — — — — 0.041
Coefficient of variation — — — — — 4.800
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extreme right end of the portion; and c1, cp = ordinates of the same
bending moment diagrams at the middle point of the portion. The
moment values of each element are given in Table 3.

The primary unknown (thrust) become X1 = −D1p/d 11 =
2.192W. Therefore, the theoretical horizontal thrust of PP1C1000H
beams is (Ht) = 2.192W. Similarly, for all VCRC beams, the theo-
retical horizontal thrusts have been calculated and are given in
Table 4. Theoretical thrust values are in terms of applied load, W.
The force method, even though developed for elastic analysis, is
applied to predict the horizontal thrust at the ends of VCRC beams
when the beams carry the ultimate load.

Comparison of Horizontal Thrust Values of Vertically
Curved Reinforced Concrete Beams

The theoretical horizontal thrust available at the ends of VCRC
beams corresponding to the hinged condition of the ends and exper-
imental horizontal thrust provided by the tie bars at the ends of
beams are compared in Table 4. The average value of the ratio of
theoretical horizontal thrust to experimental horizontal thrust is
found to be 0.856 with standard deviation of 0.041 and coefficient
of variation 4.8%. This shows that in the case of VCRC beams, the
horizontal displacement at the ends of the beams is prevented, and
the horizontal thrust experienced by the beams at the ultimate load
can satisfactorily be calculated using the force method of analysis.

Conclusions

In order to study the horizontal thrust, strength, and behavior of
VCRC beams, a total of 15 VCRC beams were cast. Out of these, 8
beams had a constant rise of 200mm, and 7 beams had a constant
rise of 300mm. All the VCRC beams were of the same span and
cross section. All the beams were tested with tie bars subjected to a
gradually increased central concentrated load until failure occurred.
The horizontal thrust, strength, and behavior were recorded. The
theoretical analysis of the horizontal thrust of VCRC beams was
calculated based on the force method. Based on experimentation
and theoretical analysis, the following conclusion are drawn:
1. It is observed that as the chord length (L2) increases, the first

crack load and ultimate load-carrying capacity of VCRC beams
increases because of a greater arch action promoted by the
curved portion of the beam.

2. For a given L2:L ratio, the first crack load and ultimate load of
VCRC beams increases as the rise of the curved portion
increases. This can be attributed to the increase in arch action
with higher rise.

3. The central deflection decreases as the chord length L2
increases. This can be attributed to the fact that the greater the
chord length, the greater the arch action, due to the availability
of greater horizontal thrust offered by tie bars resulting in the
reduction of central deflection.

4. For a given L2:L ratio, the deflection of VCRC beams decreases
as the rise of the curved portion increases. This can be attrib-
uted to the increase in arch action with a higher rise.

5. In an L2:L ratio less than 0.453, the flexural cracks developed
initially on either side of the junctions. The beams failed due to
the formation of horizontal cracks in the curved portion at the
ultimate load.

6. The beams that had the L2:L ratio greater than 0.453 failed due
to vertical cracks and very thin horizontal cracks that appeared
in the curved portion. These beams failed due to the widening
of the vertical cracks, because spreading of the curved portion
had been arrested by tie bars to a greater extent.

7. A VCRC beam with hinged support transmits a horizontal force
at the two ends because of the arch action by the curved por-
tion. In order to simulate the hinged supports, two tie bars, one
on each side of the beam and anchored at the ends, were
adopted. The sum of the displacements measured at the ends of
the beams was the axial deformation in the two tie bars. Based
on this, the horizontal force in the two tie bars was calculated.
The horizontal force in the two tie bars is equal to the horizontal
thrust at each end of a VCRC beam.

8. Using the force method of analysis, a process is suggested to pre-
dict the horizontal thrust in VCRC beams at the ultimate load
whenever the ends are prevented frommoving horizontally.

9. The average value of the ratio of theoretical horizontal thrust
obtained by this equation to experimental horizontal thrust is
found to be 0.856 with a standard deviation of 0.041 and a coeffi-
cient of variation of 4.8%. This shows that when the horizontal
displacements at ends of the beams are prevented, the horizontal
thrust experienced by the VCRC beams at the ultimate load can
satisfactorily be predicted using the force method of analysis.
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Notation

The following symbols are used in this paper:
a1 ¼ ordinate of the bending moment for the unit

state at the left end of a segment of the curved
portion;

ap ¼ ordinate of the bending moment for the
loaded state at the left end of a segment of the
curved portion;

Ast ¼ area of tensile steel;
b1 ¼ ordinate of the bending moment for the unit

state at the right end of a segment of the
curved portion;

bp ¼ ordinate of the bending moment for the
loaded state at the right end of a segment of
the curved portion;

c1 ¼ ordinate of the bending moment for the unit
state at the middle point of a segment of the
curved portion;

cp ¼ ordinate of the bending moment for the
loaded state at the middle point of a segment
of the curved portion;

(H)E ¼ experimental horizontal thrust of a VCRC
beam;

(H)T ¼ theoretical horizontal thrust of a VCRC beam;
L ¼ effective span;
L1 ¼ length of the straight portion of the VCRC

beam on one side of the curved portion;
L2 ¼ chord length of the curved portion of the

VCRC beam;
L2:L ¼ chord length to effective span ratio;
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lc ¼ length of chord between adjacent points in
the curved portion;

Lt ¼ length of tie bars;
LVDT ¼ linear variable differential transducer;

M1 ¼ moment at the unit state;
Mcr ¼ midspan bending moment of beam at the first

crack load;
Mp ¼ moment at the loaded state;
N1 ¼ axial force at the unit state;
Np ¼ axial force at the loaded state;

PP0C400H ¼ VCRC beam of rise 200mm and inner chord
length 400mm;

PP0C600H ¼ VCRC beam of rise 200mm and inner chord
length 600mm;

PP0C800H ¼ VCRC beam of rise 200mm and inner chord
length 800mm;

PP0C1000H ¼ VCRC beam of rise 200mm and inner chord
length 1000mm;

PP0C1200H ¼ VCRC beam of rise 200mm and inner chord
length 1200mm;

PP0C1400H ¼ VCRC beam of rise 200mm and inner chord
length 1400mm;

PP0C1600H ¼ VCRC beam of rise 200mm and inner chord
length 1600mm;

PP0C1800H ¼ VCRC beam of rise 200mm and inner chord
length 1800mm;

PP1C600H ¼ VCRC beam of rise 300mm and inner chord
length 600mm;

PP1C800H ¼ VCRC beam of rise 300mm and inner chord
length 800mm;

PP1C1000H ¼ VCRC beam of rise 300mm and inner chord
length 1000mm;

PP1C1200H ¼ VCRC beam of rise 300mm and inner chord
length 1200mm;

PP1C1400H ¼ VCRC beam of rise 300mm and inner chord
length 1400mm;

PP1C1600H ¼ VCRC beam of rise 300mm and inner chord
length 1600mm;

PP1C1800H ¼ VCRC beam of rise 300mm and inner chord
length 1800mm;

Q1 ¼ shear at the unit state;
Qp ¼ shear at the loaded state;
r ¼ rise of the VCRC beam;

Wcr ¼ first crack load of the VCRC beam;
Wu ¼ ultimate load of the VCRC beam;
D1p ¼ displacement in the primary system for the

loaded state;
d 11 ¼ displacement in the primary system for the

unit state; and
d t ¼ elongation of the tie bars.
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