
Received: 15 June 2018 Revised: 20 September 2018 Accepted: 30 October 2018

DOI: 10.1002/cpe.5307

S P E C I A L I S S U E P A P E R

File retrieval and storage in the open source cloud tool using
digital bipartite and digit compact prefix indexing method

P. Priya Ponnuswamy1 R. Vidhya Priya2 C.P. Shabari Ram1

1Department of Computer Science and

Engineering, PSG Institute of Technology and

Applied Research, Coimbatore, India
2PSG College of Technology, Coimbatore,

India

Correspondence

P. Priya Ponnuswamy, Department of

Computer Science and Engineering, PSG

Institute of Technology and Applied Research,

Coimbatore-641 062, India.

Email: priyabaskii@gmail.com

Summary

Cloud computing plays a major role in data centers, and its important services are used by the

data centers. Data centers are large number of computers that are interrelated to make the

cloud services available. Data centers are increasing nowadays to provide a platform to store

files, data applications, etc. Data centers with large storage capacity are the foundation for cloud

computing services such as web searching and network storage. Data traffic takes place within

and outside the data centers and needs to forward data between servers in the network. In this

paper, a new method called digital bipartite and digit compact prefix with hashing technique

is used to store and retrieve data in the cloud. The idea is to create a volume of storage for

a user within the data center to store their files. Digital bipartite and Digit compact prefix

are implemented to store and retrieve the user files efficiently. The implementation is done in

OpenStack with a multinode setup. The proposed method compares the insertion time, search

time, and throughput with the number of nodes, the number of compute instances, and the

number of files for the two algorithms.

KEYWORDS

cloud, data center, hashing techniques, open-source cloud system, OpenStack

1 INTRODUCTION

Nowadays, cloud computing plays a vital role in accessing hardware and software resources through the Internet. The cloud offers convenient,

on-demand access to a set of resources such as networks, computers, storage, applications, etc, as a service over the Internet. To provide

these services, data centers play an important role. Data centers consist of hundreds of servers interconnected and some petabytes of storage

maintained in a large-scale heterogeneous distributed system. Efficiently managing these servers for storage is a primary challenging one. By

storing their data in the cloud, the users can be comforted from data maintenance and storage. In distributed systems, a hash table with indexing

is one method to efficiently manage the stored files in large-scale systems such as data centers. The important property of the hash table with

indexing method is that it can store and retrieve user files easily by minimizing the table structure and avoiding collisions. In cloud data centers,

data storage and retrieval can be the biggest task because all the cloud servers are not on the same network. Data retrieval in cloud data centers

is to be considered so that the maximum number of users can retrieve and store files in an effective manner. To maintain data in the data

center, the cloud systems depend on distributed file systems. Examples of such systems include Google File System, MapR File System, Ceph File

System, cluster file systems, IBM General Parallel File System, Parallel Virtual File System, and Hadoop Distributed File System. There are many

techniques and algorithms available for cloud information retrieval. One example is for a given condition, the equivalent information is obtained

from the file system. Another is in open-source cloud systems such as Amazon's EC2, where many clients can upload their own application in

similar cloud machines. Because different client information is present in different data centers, monitoring all the data or information in different

data centers becomes more difficult. Hence, a more effective data access method is needed. A new method in the cloud system has been

developed. In this method, data center nodes are considered compute nodes, and these compute nodes are organized in a hierarchical structured

network. Each data center node creates its own index to speed up the time of insertion and search of the files. A centralized index is made by

Concurrency Computat Pract Exper. 2019;e5307. wileyonlinelibrary.com/journal/cpe © 2019 John Wiley & Sons, Ltd. 1 of 12
https://doi.org/10.1002/cpe.5307

https://doi.org/10.1002/cpe.5307
https://orcid.org/0000-0002-1690-1503
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.5307&domain=pdf&date_stamp=2019-05-21

2 of 12 PRIYA PONNUSWAMY ET AL.

considering only a portion of its own index in the network. Each data center node maintains a part of the global index. This type of storage and

retrieval is impossible in large cloud systems.1,2

2 RELATED WORK

Many researchers introduced algorithms for search and retrieval of data in cloud data centers. Lu and Shen3 introduced an algorithm called key

negotiation. This algorithm works in the shared cloud storage system with distributed hash table (DHT)–based networks. In key negotiation,

bloom filter and B+ search tree data structures are used to store and update the data. The data and the key are processed and uploaded in the

DHT table. An authorized user can query to obtain the data; the lookup operation is done by combining the B+ tree and the bloom filter. To

update their data, another method called rsync algorithm is used. In this method, the file uploading and downloading times are measured with

respect to file size. An algorithm called fuzzy keyword search and gram-based fuzzy set construction is also introduced to search in the cloud

environment.4,5 In this method, the focus is on reducing the space of indexing in the storage. The index is created by computing the trapdoor with

the key and storing it in the cloud server. When an authenticated user types a word, then the edit distance is calculated, and it is transformed

into a fuzzy set. Then, the trapdoor is generated and submitted to the cloud system. Once the server receives a query, the server checks whether

there is any match with the index and returns a result if a match is found. The bloom filter is also used with the fuzzy keyword set to search.

Users can store their files in the cloud, and a group of users can retrieve their files using a symbol-based tree traverse search method. In this

method, a multiway tree is constructed for storing the fuzzy keyword. Pagh and Rodler6 proposed a method called cuckoo hashing in which two

hash tables are created. During insertion, it checks the position in the first hash table, and if it is filled with data, then it checks in the second

hash table; the search continues until it finds an empty space. Before storing data in the cloud storage, encryption is done by a latent semantic

method, and the index is maintained for the unique words. When a user searches for a keyword, the token algorithm computes the hash value in

the cloud server. Then, the algorithm computes the sequence of hashes in the hash table to retrieve the files. The retrieved file mapped with the

identifier and retrieve the documents with the vector coordinates. In another proposed method,7 the file is initially loaded on the server and is

split into chunks, which are then organized into a tree structure. The hash algorithm applied to all the chunks, pairing the hash and concatenated

to get a new hash. The new hash is again hashed until 512 bits is generated for the entire file. To retrieve a file, a file name is mapped with the

file stream, and the file stream is downloaded.

Proposed Work

Cloud application supports deploying a storage system and requires high scalability and throughput. Cloud storage systems are introduced to

satisfy the requirements of data-exhaustive applications such as managing high-end storage and easy availability with low latency. Cloud users

can store their data on remote servers. Files saved in cloud can be easily accessed and available through a network. A data center is also designed

to provide efficient platform for data storage. To store and retrieve the data in the data center, data forwarding is to be done in the data center.

The layout of the data center is switch-centric with fat-tree topology. In cloud, compute nodes act as a resource pool, and the number of nodes

can be increased or decreased based on the demand. In the existing solution, if the volume of files stored in a storage device is too high, efficient

retrieval and storage of files become an issue.8-11

Figure 1 shows the instance and volume creation in different compute nodes. This paper introduces two algorithms for storing and retrieving

in the cloud storage platform. The controller allocates instances to compute nodes. The process of finding the compute nodes and allocating the

virtual machine (VM) is done by the controller node. The compute node act as a server and the controller node acts as the index server. The

compute nodes and VMs are assigned a unique number to identify the user files effectively, as shown in Table 1. A large number of user files are

stored in compute nodes, where the volume is created in a cloud storage system. Inserting and searching a file in the storage use a new method

and an optimized one.

FIGURE 1 System structure of VM creation

PRIYA PONNUSWAMY ET AL. 3 of 12

TABLE 1 Unique ID for compute nodes and VMs

Compute 1: 00 Compute 2: 01 Compute 1: 10 Compute 2: 11

VM1 : 000 VM1 : 100 VM1 : 000 VM1 : 100

VM2 : 001 VM2 : 101 VM2 : 001 VM2 : 101

VM3 : 010 VM3 : 110 VM3 : 010 VM3 : 110

VM4 : 011 VM4 : 111 VM4 : 011 VM4 : 111

FIGURE 2 Framework of the proposed method

In cloud, the data center consists of one controller and four compute nodes. To search the files quickly, the local index must be maintained in

all the compute nodes, and the global index must be maintained in the controller node. The proposed algorithm effectively works for storing and

retrieving the large-scale files or applications in the cloud storage system.

The VM instances are created in each compute node, and they are called c1, c2, c3, and master. In each compute node, a master node will be

maintained. The controller node acts as an entry point for the user and the administrator. Figure 2 shows the workflow of the proposed system,

which is explained as follows. When a user is trying to access the cloud system, the horizon provides a web-based dashboard to use the services

available in OpenStack. The keystone service in OpenStack decides and checks whether the user is authenticated or not with their username and

password. If the user is authenticated, the user can be allowed access to the VM instances. The VM instances are allocated to any of the compute

nodes. Through the allocated instances, the user can store, access, and retrieve their files and data. For each instance in a compute node, separate

storage, ie, a volume of 1 GB, for each user is maintained by the service cinder. While storing and retrieving the user files, the digital bipartite

and digit compact prefix indexing algorithm is to be executed in each compute node, and their meta data are maintained in the controller node.

The metadata contain the ID generated by the compute node for VM, the compute node ID, and the file name and details about the file. When

an authorized user submits a request to retrieve the stored files, the controller node transfers control to the particular compute node, and the

master node sends a request to the particular node. The special search algorithm is maintained in all the master nodes to quickly retrieve the

search results.

Whenever a VM is created, a unique ID will be generated and inserted automatically in the controller node. When a VM shuts down, the

generated ID will be maintained in the controller node to find the user volume efficiently. Adding and deleting VMs concern only the IDs

maintained; balancing of nodes would be done with minimum swapping.

The proposed method provides infrastructure as a service in the cloud. The user can get a VM to access, store, and retrieve their specific files

that they are interested in.

4 of 12 PRIYA PONNUSWAMY ET AL.

3 THE PROPOSED METHOD

3.1 Digital bipartite insertion and searching

The digital bipartite search tree is similar to a binary search tree. It is used to organize the files in the cloud storage. The levels in the tree are

organized based on the random numbers generated for a particular file name. For every level of the tree, a file-name random number is inserted

by filling the left and the right child nodes. To build a tree initially, it starts with the root of the tree, followed by the left and right nodes. If both

the left and right child nodes are completed, then the left child node is turned to a folder and the file-name value is inserted within the folder of

the left and right nodes. The same procedure continues for the right child node also. Finally, the leaf level contains the file names. The insertion

and searching are different from the binary search tree. In binary search, insertion takes place by comparing the value in the root with the left

and right. To search for a file in the proposed method, the index value of the file names is maintained globally in the controller node and locates

exactly the level and the file where it is.

Insertion and searching

In a cloud storage system, a large amount of user files is stored on different compute nodes. When inserting a file in the cloud storage

system, the compute node and controller node use a data structure algorithm. The algorithm is used to efficiently retrieve and insert the

files in the storage volume. To insert and search a file, the first algorithm uses the digital bipartite algorithm. For every insertion of a file

in the volume, the index will be stored in the controller node. Inserting a file for a particular user happens within the instance of a VM in

the cloud. The initial request is stored under the root of the left and right nodes with the binary value of a file name with preceding 01,

10, and 11, which is converted into a decimal value and stored as a file name. The same procedure is repeated for all the next levels. The

file name with a binary value and preceding bits are sent to the global index that is maintained in the controller node. The updates sent by

the compute node are maintained in a controller node, ie, the global index list. While retrieving a file from the compute node, the request

submitted by the user is sent to the controller, and the search takes place in the global index with the file name value and instance ID. If it

matches with any of the files, then the request is sent to the corresponding compute node volume instead of searching all the compute node

volumes.12-15

3.2 Algorithm for insertion

Get input (filename) from the user

Inserting function is invoked

Case 1: If node equals NULL

Create a new node and insert it

Case 2: If (node.left! = NULL && node.right! = NULL)

Case 2a: if folder has two files

If (node.left.data.length > 3)&&node.right.data.length > 3)

node = node.left

node.left = new node (generate folder (root,node.left,data)

node.left.left = tmp

node.left.right = insert (node.left.right,data)

Case 2b: if the folder has one folder and one file

Else if (node.left.data.length < 3)&&(node.right.data.length > 3)

node.tmp = node.right

node.right = new.node (generate folder (root,node.right.data)

node.right.left = tmp;

node.right.right = insert (node.right.right,data)

Case 2c:if the folder has 2 folders

Elseif((node.left.data.length < 3) && (node.right.data.length < 3))

Else ((node.right. = insert (node.right,data)

Case 3:if the current nodehas no folders

Elseif (node.left==null) then

node.left = insert (node.left.data);

Else node.right = insert (node.right,data)

End insert

Write the data into file serialization

The file can be reconstructed as a tree using deserialization Print ancestor

PRIYA PONNUSWAMY ET AL. 5 of 12

Algorithm for Search

isExist (root,target)

{

If (root==null) then

Return false;

If (root.left==target or root.right==target)

Return true

Return false

}

Cloud infrastructure consists of many compute nodes. More number of cloud users stores their huge volume of files in the cloud storage. To

store and retrieve the user files in a scalable and efficient manner, a good indexing method is required. Such indexing scheme should support

parallel search to improve the efficiency. Here, the tree-based indexing method is used for organizing and managing the file storage. Storing

and retrieving files in cloud storage is done by considering the key value. Trie is a better searching algorithm and is used in searching data from

different sources such as big databases, data in compiler, and dictionaries, and in finding the router path in computer networks. Trie is a type of

indexing method for searching and storing files efficiently. Compared with a binary search tree searching a file in a sorted order with a minimum

number of searches, this is one of the methods to increase the quality of searching speed.

Client application for accessing the user storage is linked with the controller. The controller acts as an index server. The controller consists

of compute node information, storage disk information, and instance information. The storage nodes are integrated with compute nodes.

The storage index consists of a table where the key for the file name will be mapped to the instance name and compute nodes. When

the user wishes to store the file in the accessed instance and the storage disk, the file name is first converted into a hash value. The hash

value, accessed instance ID, and ID information of the accessed compute node are stored in the table. This index table is maintained in

the controller node. This index table is responsible for processing the request submitted by the user to search and store a file in the cloud

storage system.

To route the query submitted by the user among the compute nodes, all the compute nodes are connected to each other in a peer-to-peer

manner.

3.3 Digit compact prefix insertion and searching

First, consider the file insertion in the cloud storage disk, and through instance, the user can access the cloud while using the system; if the user

wishes to store the file, the file name is converted into a unique hash value. The hash value is considered a key value and consists of a number

from 0-9. Number from 0 to 9 is considered as the root node. Based on the key of the user, the path begins to traverse from the root node to a

terminal or leaf node. The final leaf node represents the key value for a corresponding file, and every level of the path has label. The labels are

marked with a digit. Trie is like a tree structure that has root nodes and element nodes. The Trie node starts with the root node containing an

array of number with size 10, which has numbers from 0 to 9. When a file name is given by the user, a unique hash key value will be generated,

and a corresponding hash value will be stored in the tree structure starting from the root node.16-19

For example, in the case of numeric keys, each node has an array of ten pointers to its branches, one for each of the ten numbers. The keys as

file names are stored in the leaf nodes. The keys are generated from the hash table. To access a node containing a key, move down a sequence

of branch nodes following the corresponding branch based on the numeric array composing the key. To access these nodes, track a path from

the root depending on the numbers forming the key, until the appropriate node holding the key is reached. Thus, the depth of a node in a tree

depends on the key.

The condition for inserting a file name in the storage consists of three conditions. First, if the key value for the file name is already present in

the structure, the file searching begins from the root to the down level. Second, if the key value for the file name matches with only minimum

digits, the files stored in each disk consists of more number of files names; the time taken to find a file in the disk is proportional to the number

of files. If the file name is stored in the form of the text, the filename may be 10 to 15 characters or more. While spending time to search the text

down every 10 or 15 levels to get the corresponding file name in this digit compact prefix, the hash value is generated for the given file name,

and searching takes place only in the minimum levels compared with the existing searching.

Each compute node activates the algorithm whenever the user digit compact prefix store and retrieve the files in the cloud storage. To access

the query, a local search is performed in the index table in the controller node. In the local search, the controller node finds in which compute

nodes and instances the user file has been stored. The controller sends a request to the particular compute node to retrieve the file.

The amount of files searched in the tree structure is |x| pointers to get to the node for the corresponding file. Each pointer takes O(1) time to

search a file. A trie with N nodes will require a space of O(N.|X|) due to the pointers in each node.

6 of 12 PRIYA PONNUSWAMY ET AL.

Algorithm

Begin Insert (file name ID)

{

If file already exists it displays file exist

Convert word to number array

Begin loop

Call subnode (ch)

If (Subnode of root)

then create folder

Else

Add that node in the tree

Create the folder

End loop

Create new file with the file name ID

}

Begin search (filename ID)

{

Convert file name into character array

Call subnode (ch)

Loop

If it return null then return false

Else

Call subnode (ch)

End

If (current.is end==true)

Then

Return true

}

4 IMPLEMENTATION AND RESULTS

The proposed work is implemented in OpenStack icehouse with four-node setup. The four-node setup consists of a controller and compute

nodes. The controller node has an i7 processor, 16-GB memory, and a 1-TB hard disk, and the compute node has an i5 processor, 8-GB memory,

and a 500-GB hard disk. The controller and compute nodes are shown in Figure 3. All the machines are connected through a 100-Mb/s Ethernet

switch. The operating system in which OpenStack is installed is Ubuntu 14.0. Infrastructure as service was done to provide the storage to the user.

Cinder plays major role in OpenStack for block storage service. Block storage is used to provide storage resources to a client. The component

for block storage is a user and a tenant (project), using role-based access assignment. User actions are controlled by the roles, and it is maintained

and configured by the administrator. Each user's volume acts as secondary storage device similar to a hard disk and pen drives to store their

files or data. The client can use their storage without any knowledge of where their storage is actually available. To provide the storage service,

Cinder API, Cinder scheduler, and Cinder-volume services are configured in Cinder. These services are hosted in the controller, and volumes are

attached in the compute node. The software-based Cinder plug-in is used for creating volume (ie, LVM) The number of instances, CPU, IPs, and

volume hypervisor details are shown in Figure 3.

Before storing a file in the cloud server, a random unique number is generated for the given file name, and the file is loaded in the cloud server.

The unique number of the file name, volume number, instance id, and compute node number are loaded in the global file in the controller node.

The global file is used to reduce the search time. The time taken to store in the specified path and the time taken to retrieve in that particular

path is calculated for bipartite and numeric trie algorithm and shown in a graph.

First, these two operations are compared with the existing binary search and trie algorithm with different file sizes. In the existing binary tree

algorithm, if a file is inserted and there is no root, then the inserted file is stored in the root or it is placed on the left or right of the root. However,

in the proposed algorithm, when a file is inserted, it is placed to the left and the right of the root. The leaf node contains the files. Inserting takes

only less time. Searching in existing binary tree takes more time compared with the proposed bipartite algorithm. In the bipartite algorithm, when

a file is given by the user, searching does not take place root by root; it directly finds the path of the file and retrieved. The existing algorithm can

be a full binary tree and not a complete binary tree in all cases.

The existing trie algorithm stores the file by considering a file name letter by letter in each level. If the file name is of seven characters, the

first letter is inserted in the root, the second letter in the second level, and so on. In the proposed method of the number trie algorithm, the file

PRIYA PONNUSWAMY ET AL. 7 of 12

FIGURE 3 Components used in OpenStack

names equivalent of the hash value are considered. The same seven-character file name is converted into some 4 or 5 digits. The time taken to

insert seven characters takes more time compared with inserting digits.

5 PERFORMANCE EVALUATION

The performance evaluation of the proposed system is done by analyzing its fulfillment of file storage and its efficient retrieval. The digit compact

prefix algorithm shows that they are indeed lightweight. We will focus on the overall throughput in terms of number of files processed, the time

required to store the files in its logical structure, the time required to retrieve the file from storage, and the number of queries processed by our

cloud experimental setup. The experiment is conducted using OpenStack (Icehouse release) on the Linux System with Intel Core i7 processor

running at 3.24 GHz and 16-GB DDR3 RAM. Our multinode environment consists of one controller node and four compute nodes. We tabulate

our result in Table 2 for compute node 1 and compute node 2, respectively. In addition to that, the user set (200 users) and the file set (250 files)

represent a number of users and files processed vice versa. Figure 4 shows a number of files to be inserted using our first algorithm named digital

bipartite. The result indicates that, for a given set of compute nodes, the number of files inserted in OpenStack storage increases exponentially

within a minimum amount of time. This is because the number of compute nodes increases lead to processing multiple requests at a unit time.

Similarly, the time to retrieve a file using digital bipartite is also a relatively minimal amount of time. So, we can retrieve a file within a given minimum

unit of time. Figure 5 shows the effectiveness of the digital bipartite algorithm in terms of file retrieval in OpenStack multinode environment.

TABLE 2 Time comparison for two algorithms

Compute Number Number File Size Insertion Time Searching Time Number of Files Retrieved

Node of Users of Files Digital Digit Compact Digital Digit Compact Digital Digit Compact

Bipartite Prefix Bipartite Prefix Bipartite Prefix

1.1-2.5 Mb 2.142486 0.56 0.612663 0.01547

3.5-5.5 Mb 2.424766 0.63 0.510123 0.018543

Compute Node 1 50 50 7-15 Mb 2.245755 0.63 0.594566 0.0169 48 50

20-93 Mb 2.557484 0.69 0.561066 0.009

95 Mb-1.6Gb 2.594475 0.69 0.559191 0.00836

1.1-2.5 Mb 2.296403 0.54 0.468975 0.01422

3.5-5.5 Mb 2.290065 0.55 0.568975 0.01849

Compute Node 2 50 50 7-15 Mb 2.300066 0.552 0.574898 0.01002 49 50

20-93 Mb 2.300645 0.552 0.433665 0.0159

95 Mb-1.6Gb 2.313312 0.545 0.486626 0.01

8 of 12 PRIYA PONNUSWAMY ET AL.

FIGURE 4 Insertion time for N files

FIGURE 5 Search time for different file sizes

FIGURE 6 Throughput for N users

PRIYA PONNUSWAMY ET AL. 9 of 12

FIGURE 7 Successful queries processed by compute nodes

We then turn our focus to the throughput for certain users, ie, the total number of files processed for a given set of users. Specifically, it is a

ratio of a number of files processed from a given set of queries to the number of users. Figure 6 estimates the relationship between a number

of processed files and users in multimode environment. The stability of the system is analyzed by successfully processed queries while executing

digital bipartite and digit compact prefix algorithms. The number of processed queries increases gradually with respect to users. Figure 7 indicates

the increase using multiple computation nodes.

Our experimental result on digit compact prefix indicates immediate retrieval than our proposed digital bipartite–based retrieval. In our

experiment, digit compact prefix–based insertion takes 1.58 ms for 250 files to insert the files in OpenStack storage, and file retrieval takes on

average of 0.012 ms. The successfully processed queries, as well as overall throughput of the digit compact prefix algorithm is better than the

digital bipartite.

Insertion time is calculated by the time the user submits the file name minus the time taken to place the file on the tree. In digital bipartite the

time is calculated based on the following conditions:

1. If the folder has two files;

2. If the folder has one folder and one file;

3. If the folder has two folders;

4. If the current node has no folders.

FIGURE 8 Insertion time for N files

10 of 12 PRIYA PONNUSWAMY ET AL.

FIGURE 9 Search time for different file sizes

FIGURE 10 Throughput for N users

In digit compact prefix, the time is calculated based on the following conditions:

1. If the file name is not available

2. If the file name match with some words.

Search time is calculated by the time the user submits the file name minus the time taken to search in the index table.

The throughput of compute node is calculated by taking the number of queries submitted by the user in the controller node by the number of

users accessing the node.

Figure 8-11 show the insertion time, search time, processed queries, and the throughput of the digit compact prefix algorithm. Figure 12

compares search time of the two algorithms, and it shows that the digit compact prefix takes less time in searching a file. Figure 13 compares the

insertion time of the two algorithms, and it shows that the digit compact prefix takes less time in inserting a file since the already available letters

in a file name are not necessary to create a node. Table 2 shows that the average number of requests submitted by 50 users in compute nodes 1

and 2 for retrieving and inserting a file ranges from 1.1 MB to 2 GB. The time taken for each compute node is also shown in the table.

As expected, the running time of computation for both the algorithms increases logarithmically with a maximum number of files inserted in

our system. Note that our experiment dealt with a number of compute nodes up to four in the OpenStack setup.

Finally, we remark that, based on our experimental outcomes, the proposed two algorithms, namely digital bipartite and digit compact prefix,

achieve efficient file storage and retrieval with maximum throughput.

PRIYA PONNUSWAMY ET AL. 11 of 12

FIGURE 11 Successful queries processed by compute nodes

FIGURE 12 Comparing search time: two algorithms

FIGURE 13 Comparing insertion time: two algorithms

12 of 12 PRIYA PONNUSWAMY ET AL.

6 CONCLUSION

We have presented the implementation of an indexing technique for storing and retrieving files for infrastructure-as-a-service applications in

cloud environment. We started by revisiting the traditional file system in application workloads and technological situations. Our implementation

optimizes for vast files that are inserted to and then read in the file system. Our system provides a large amount of data transfer to many clients

while reading and writing using the digit compact prefix algorithm, in comparison with digital bipartite algorithm. The work of the controller

is minimized by creating an index. This proposed method has been implemented and evaluated in OpenStack, which is a real-world cloud

infrastructure.

ORCID

P. Priya Ponnuswamy https://orcid.org/0000-0002-1690-1503

REFERENCES

1. He J, Wu Y, Fu Y, Zhou W. Clone-based data index in cloud storage system. Paper presented at: 4th International Conference on Mechatronics,
Manufacturing and Materials Engineering (MME 2016); 2016; Wuhan, China.

2. Li D. A novel distributed index method for cloud computing. Int J Grid Distrib Comput. 2016;9(2):1-16.

3. Lu Z, Shen G. Towards a DHT networks and safe file sharing scheme in cloud storage service. Adv Sci Tech. 2015;95:188-194.

4. Zhou W, Liu L, Jing H, Zhang C, Yao S, Wang S. K-gram based fuzzy keyword search over encrypted cloud computing. J Softw Eng Appl. 2013;6(1):29-32.

5. Wang C, Cao N, Ren K, Lou W. Enabling secure and efficient ranked keyword search over outsourced cloud data. IEEE Trans Parallel Distrib Syst.
2012;23(8):1467-1479.

6. Pagh R, Rodler FF. Cuckoo hashing. J Algorithms. 2004;51(2):122-144.

7. Wang J, Wu S, Gao H, Li J, Ooi BC. Indexing multi-dimensional data in a cloud system. Paper presented at: 2010 ACM SIGMOD International
Conference on Management Data; 2010; Indianapolis, IN.

8. Zhang Q, Pan X, Shen Y, Li W. A novel scalable architecture of cloud storage system for small files based on P2P. Paper presented at: 2012 IEEE
International Conference on Cluster Computing Workshops; 2012; Beijing, China.

9. Wu S, Jiang D, Ooi BC, Wu K-L. Efficient B-tree based indexing for cloud data processing. Proceedings VLDB Endowment. 2010;3(1-2):1207-1218.

10. Shirmarz A, Sabaei M, Hosseini M. Evaluation and comparison of binary trie base IP lookup algorithms with real edge router IP prefix dataset. Int J Adv
Comput Sci Appl. 2016;7(6):155-161.

11. Ghemawat S, Gobioff H, Leung S-T. The Google file system. Paper presented at: 9th ACM Symposium on Operating Systems Principles; 2003; Bolton
Landing, NY.

12. He J, Wu Y, Dong Y, Zhang Y, Zhou W. Dynamic multidimensional index for large-scale cloud data. J Cloud Comput Adv Syst Appl. 2016;5:10.

13. Plavec F, Vranesic ZG, Brown SD. On digital search tree: simple method for constructing balanced binary tree. Paper presented at: 2nd International
Conference on Software and Data Technologies; 2007; Barcelona, Spain.

14. Koutrika G, Zadeh ZM, Garcia-Montina H. Data Clouds: summarizing keyword search results over structured data. Paper presented at: 12th
International Conference on Extending Database Technology: Advances in Database Technology; 2009; Saint Petersburg, Russia.

15. Bagwell P. Fast and space efficient trie searches. https://infoscience.epfl.ch/record/64394/files/triesearches.pdf. Published 2000.

16. Zhelev R, Georgier V. A DHT based scalable and fault tolerant cloud information service. Paper presented at: The 5th International Conference on
Ubiquitous Computing, Systems, Services, and Technologies; 2011; Lisbon, Portugal.

17. Nagaraj K, Khandelwal H, Killian C, Rao Kompella R. Hierarchy aware distributed overlays in data centers using DC2. Paper presented at: 4th
International Conference on Communication Systems and Networks (COMSNETS 2012); 2012; Bangalore, India.

18. Wu S, Wu K-L. An indexing framework for efficient retrieval on the cloud. IEEE Data Eng Bull. 2009;32(1):75-82.

19. Shekokar N, Sampat K, Chanwalla C, Shah J. Implementation of fuzzy keyword search over encrypted data in cloud computing. Procedia Comput Sci.
2015;45:499-505.

How to cite this article: Priya Ponnuswamy P, Vidhya Priya R, Shabari Ram CP. File retrieval and storage in the open source

cloud tool using digital bipartite and digit compact prefix indexing method. Concurrency Computat Pract Exper. 2019;e5307.

https://doi.org/10.1002/cpe.5307

https://orcid.org/0000-0002-1690-1503
https://orcid.org/0000-0002-1690-1503
https://infoscience.epfl.ch/record/64394/files/triesearches.pdf
https://doi.org/10.1002/cpe.5307

	File retrieval and storage in the open source cloud tool using digital bipartite and digit compact prefix indexing method
	Abstract
	INTRODUCTION
	RELATED WORK
	THE PROPOSED METHOD
	Digital bipartite insertion and searching
	Algorithm for insertion
	Digit compact prefix insertion and searching

	IMPLEMENTATION AND RESULTS
	PERFORMANCE EVALUATION
	CONCLUSION
	REFERENCES

