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Abstract In this paper, a single server retrial queue with general retrial time and

collisions of customers with modified M-vacations is studied. The primary calls

arrive according to Poisson process with rate k. If the server is free, the arriving

customer/the customer from orbit gets served completely and leaves the system. If

the server is busy, arriving customer collides with the customer in service resulting

in both being shifted to the orbit. After the collision the server becomes idle. If the

orbit is empty the server takes at most M vacations until at least one customer is

recorded in the orbit when the server returns from a vacation. Whenever the orbit is

empty the server leaves for a vacation of random length V. If no customers appear in

the orbit when the server returns from vacation he again leaves for another vacation

with the same length. This pattern continues until he returns from a vacation to find

at least one customer recorded in the orbit or he has already taken M vacations. If

the orbit is empty by the end of the Mth vacation, the server remains idle for

customers in the system. The time between two successive retrials from the orbit is

assumed to be general with arbitrary distribution R(t). By applying the supple-

mentary variables method, the probability generating function of number of cus-

tomers in the orbit is derived. Some special cases are also discussed. A numerical

illustration is also presented.
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1 Introduction

In recent years there have been significant contributions to the retrial queueing

system. A retrial queueing system is characterized by the features that the arriving

calls, which find a server busy, do not line up or leave the system immediately

forever, but they go to some virtual place called an orbit and try their luck after some

random time. Such queueing systems play important roles in the analysis of many

telephone switching systems, telecommunication networks, computer systems, local

area networks and daily life situations. A review of retrial queue literature could

found in Yang and Templeton (1987), Falin and Templetion (1997), Artalejo (1999a,

b) and Artalejo and Gomez-coral (2008). A number of applications of retrial queues in

science and engineering can be found in Kulkarni and Liang (1997). For many

applications in telecommunications and mobile communication, Choi and Park

(1990), Choi et al. (1995), Choi and Chang (1999) studied the single server retrial

queue with priority calls and Krishnakumar et al. (2002) analysed an M/G/1 retrial

queue with feedback and starting failures using supplementary variable technique.

Queueing systems with vacation time have been found to be useful in modeling

the systems in which the server has additional tasks. Various authors have analyzed

queueing problems of server vacations with several combinations. A literature

survey on queueing systems with server vacation can be found in Doshi (1986).

Doshi (1985) discussed an M/G/1/system with variable vacations. A comprehensive

and excellent study on the vacation models can be found in Takagi (1991). Li and

Yang (1995) developed an M/G/1 retrial system with server vacations. Later

Artalejo (1997) analyzed an M/G/1 retrial queue with exhaustive server vacations,

i.e. the server takes a vacation only when there are no customers in the systems.

Krishna Reddy and Anitha (1999) considered an M/G(a, b)/1 model with M

different types of vacations. Arumuganathan et al. (2008) gave an excellent study on

steady state analysis of a non-Markovian bulk queueing system with N-policy and

different types of vacations. Krishna kumar et al. (2002) studied an M/G/1 retrial

queue where the server operate according to a Bernoulli vacation policy as

described by Keilson and Servi (1986).

In many situations involving data transmission from diverse sources there can be

conflict for a limited number of channels or other facilities. Uncoordinated attempts

by several sources to use a single server facility can result in ‘‘Collision’’ leading to

the loss of the transmission. Jonin (1982) and Falin and Sukharev (1985) have

analyzed the retrial queueing system with collision, called the queue with double

connections, in which, if an arriving customer interrupts (collides with) a customer

in service, both the arriving customer and the served customer join the retrial group

and the server becomes free immediately. Choi et al. (1992) have discussed a retrial

queueing system with constant retrial rate and collision in the specific communi-

cation protocol CSMA-CD. Recently Krishna kumar et al. (2010) analyzed a single

server feedback retrial queue with collisions. Wu et al. (2011) have analyzed a

retrial queue with pre emptive resume and collisions. Gao and Yao (2013) have

discussed a queueing system with randomized working vacations and at most J

vacations.

V. Jailaxmi et al.

123



Several results have been reported separately on retrial queueing systems with

general retrial time, retrial queues with modified vacations and retrial queues with

collisions. The study of retrial queueing systems, taking into account the above

mentioned features is worth investigating. Not much work in this direction is found

in the literature. Based on this observation, a single server retrial queueing system

has been discussed with general retrial time, modified M-vacations and collisions.

In this paper, we consider the case of an M/G/1 retrial queueing system with

general retrial time, modified M-vacations and collision. At the arrival epoch if the

server is idle, then the arriving customer begins its service immediately. Otherwise, at

the arrival epoch if the server is busy, the arriving customer collides with the customer

in service resulting in both being shifted to the orbit. After the collision, the server

becomes idle. Whenever the orbit is empty the server leaves for a vacation. At a

vacation completion epoch, if the orbit size is zero, the server leaves for another

vacation of the same duration. This pattern continues until the server returns from a

vacation to find at least one customer recorded in the orbit or until it has already

availed M number of vacations. If the orbit is empty by the end of the Mth vacation,

the server remains idle in the system to render service for customers from main pool

or from retrial group. The model under study is schematically represented in Fig. 1.

2 Motivation

The motivation for the proposed model comes from a situation observed in the

performance evaluation of local area networks operating under transmission

protocols like the carrier sense multiple access with collision detection (CSMA-

CD). For instance, in the CSMA-CD protocols for a fiber optic bus network with a

finite number of stations, each of which has an infinite storage buffer, the collisions

occur during the transmission of arbitrary length packets. This is because no slot

synchronization is needed. Further, under the unslotted CSMA-CD protocol,

transmission of deferred packets promptly begins the instant the channel is sensed to

be idle. To ensure good functioning of the server, maintenance activities (i.e.

( j – orbit size) 

j≥1or No. of 
vacations 

availed=M 

j=0

j=0 or No. of 
vacations 

availed<M 

arrival if idle

if busy
collides retrial

(if idle)

orbit

server idle
M

vacations

Fig. 1 Schematic representation of the queueing model
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multiple vacations) such as virus scan can be performed when the server is idle. This

type of maintenance can be programmed to perform on a regular basis. This

situation can be modelled as an M/G/1 retrial queue with general retrial time,

modified M-vacations and collision.

3 Mathematical model

The customers arrive according to a Poisson process with rate k. The time between

two successive retrials from the orbit is assumed to be general with arbitrary

distribution R(t). Let RðxÞðrðxÞÞf ~RðhÞg½R0ðxÞ� be the cumulative distribution

function (probability density function) {Laplace–Stieltjes transform} [remaining

retrial time] of retrial time. Let SðxÞðsðxÞÞf~SðxÞg½S0ðxÞ� be the cumulative

distribution function (probability density function) {Laplace–Stieltjes trans-

form}[remaining service time] of service. Let VðxÞðvðxÞÞf ~VðhÞg½V0ðxÞ� be the

cumulative distribution function (probability density function) {Laplace–Stieltjes

transform} [remaining vacation time] of vacation. N(t) denotes the number of

customers in the orbit at time t.

The server state is denoted as

CðtÞ ¼
0; if the server is idle

1; if the server is busy

2; if the server is on vacation

8
<

:

Now the system state probabilities are defined as follows:

(1) P00ðtÞ ¼ PfCðtÞ ¼ 0;NðtÞ ¼ 0g; n� 0 is the probability that at time t the

server is idle and the orbit size is empty.

(2) P0;nðx; tÞdt ¼ PfCðtÞ ¼ 0;NðtÞ ¼ n; x\R0ðtÞ� xþ dtg; n� 1 is the proba-

bility that at time t the server is idle, the orbit size is n and the remaining

retrial time of a customer at an arbitrary time is between x and x ? dt.

(3) P1;nðx; tÞdt ¼ P CðtÞ ¼ 1;NðtÞ ¼ n; x\S0ðtÞ� xþ dt
� �

; n� 1 is the proba-

bility that at time t the server is busy, the orbit size is n and the remaining

service time of a customer under service is between x and x ? dt.

(4) Vl;nðx; tÞdt ¼ PfCðtÞ ¼ 2;NðtÞ ¼ n; x�V0ðtÞ� xþ dtg; l ¼ 1; 2; . . .M; n� 0

is the probability that at time t the server is on the lth vacation, the orbit size is

n and the remaining vacation time of a customer at an arbitrary time is

between x and x ? dt.

4 Steady state orbit size distribution

To derive the steady state orbit size distribution following equations are obtained

using supplementary variable technique cox (Cox 1965),
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P0;0ðtþ DtÞ ¼ P0;0ðtÞð1� kDtÞ þ VM;0ð0; tÞDt

P0;jðx� Dt; tþ DtÞ ¼ P0;jðx; tÞð1� kDtÞ þ P1;jð0; tÞrðxÞDtþ kð1� di;jÞ

�
Z1

0

P1;j�2ðx; tÞdx

2

4

3

5rðxÞDtþ
XM

l¼1

V1;jð0; tÞDtrðxÞ; j� 1

P1;0ðx� Dt; tþ DtÞ ¼ P1;0ðx; tÞð1� kDtÞ þ kDtP0;0ðtÞsðxÞ þ P0;1ð0; tÞsðxÞDt

P1;jðx� Dt; tþ DtÞ ¼ P1;jðx; tÞð1� kDtÞ þ kDtÞ
Z1

0

P0;jðx; tÞdx

2

4

3

5sðxÞ

þ P0;jþ1ð0; tÞsðxÞDt; j� 1

V1;0ðx� Dt; tþ DtÞ ¼ V1;0ðx; tÞð1� kDtÞ þ P1;0ð0; tÞvðxÞDt

V1;jðx� Dt; tþ DtÞ ¼ V1;jðx; tÞð1� kDtÞ þ kDtV1;j�1ðx; tÞ; j� 1

Vl;0ðx� Dt; tþ DtÞ ¼ Vl;0ðx; tÞð1� kDtÞ þ Vl�1;0ð0; tÞvðxÞDt

Vl;jðx� Dt,tþ DtÞ ¼ Vl;jðx,tÞð1� kDtÞ þ Vl;j�1ðx,tÞkDt; j� 1; 2� l�M

where dl;j ¼
0; j 6¼ 1

1; j ¼ 1:

�

From the above equations, the steady state queue size equations are obtained as

follows:

kP00 ¼ VM;0ð0Þ ð1Þ

� d

dx
P0;jðxÞ ¼ �kP0;jðxÞ þ P1;jð0ÞrðxÞ þ kð1� d1;jÞ

Z1

0

P1;j�2ðxÞdx

2

4

3

5rðxÞ

þ
XM

l¼1

Vl;jð0ÞrðxÞ; j� 1

ð2Þ

� d

dx
P1;jðxÞ ¼ �kP1;jðxÞ þ kP00sðxÞ þ P0;1ð0ÞsðxÞ ð3Þ

� d

dx
P1;jðxÞ ¼ �kP1;jðxÞ þ k

Z1

0

P0;jðxÞdx

2

4

3

5sðxÞ þ P0; jþ1ð0ÞsðxÞ; j� 1 ð4Þ

� d

dx
V1;0ðxÞ ¼ �kV1;0ðxÞ þ P1;0ð0ÞvðxÞ ð5Þ
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� d

dx
V1;jðxÞ ¼ �kV1;jðxÞ þ kV1;j�1ðxÞ; j� 1 ð6Þ

� d

dx
Vl;0ðxÞ ¼ �kVl;0ðxÞ þ Vl�1;0ð0ÞvðxÞ ð7Þ

� d

dx
Vl;jðxÞ ¼ �kVl;jðxÞ þ kVl; j�1ðxÞ; j� 1; 2� l�M ð8Þ

The Laplace–Stieltjes transforms (LST) of P1,j(x), Vl,j(x) are defined as

LSTðP1;jðxÞÞ ¼ ~P1;jðhÞ ¼
Z1

0

e�h xP1;jðxÞdx;

LSTðVl;jðxÞÞ ¼ ~Vl;jðhÞ ¼
Z1

0

e�h xVl;jðxÞdx:

Taking Laplace–Stieltjes transform on steady state Eqs. (2)–(8) we have

h~P0;jðhÞ � P0;jð0Þ ¼ k~P0;jðhÞ � P1;jð0Þ ~RðhÞ �
XM

l¼1

Vl;jð0Þ ~RðhÞ

� kð1� d1;jÞ
Z1

0

P1;j�2ðxÞdx

2

4

3

5 ~RðhÞ; j� 1 ð9Þ

h~P1;0ðhÞ � P1;0ð0Þ ¼ k~P1;0ðhÞ � kP00 ~SðhÞ � P0;1ð0Þ~SðhÞ ð10Þ

h~P1;jðhÞ � P1;jð0Þ ¼ k~P1;jðhÞ � k
Z1

0

P0;jðxÞdx

2

4

3

5~SðhÞ � P0;jþ1ð0Þ~SðhÞ; j� 1

ð11Þ

h ~V1;0ðhÞ � V1;0ð0Þ ¼ k ~V1;0ðhÞ � P1;0ð0Þ ~VðhÞ ð12Þ

h ~V1;jðhÞ � V1;jð0Þ ¼ k ~V1;jðhÞ � k ~V1;jðhÞ; j� 1 ð13Þ

h ~Vl;0ðhÞ � Vl;0ð0Þ ¼ k ~Vl;0ðhÞ � Vl�1;0ð0Þ ~VðhÞ 2� l�M ð14Þ

h ~Vl;jðhÞ � Vl;jð0Þ ¼ k ~Vl;jðhÞ � k ~V l;j�1ðhÞ; j� 1 ð15Þ

4.1 Probability generating function

To find the probability generating function (PGF) of the number of customers in the

orbit at an arbitrary time epoch, the following PGFs are defined.
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~P0ðz; hÞ ¼
X1

j¼1

~P0;jðhÞzj; P0ðz; 0Þ ¼
X1

j¼1

P0;jð0Þzj;

~P1ðz; hÞ ¼
X1

j¼0

~P1;jðhÞzj; P1ðz; 0Þ ¼
X1

j¼0

P1;jð0Þzj;

~Vlðz; hÞ ¼
X1

j¼0

~Vl;jðhÞzj; Vlðz; 0Þ ¼
X1

j¼0

Vl;jð0Þzj:

ð16Þ

The PGF P(z) of number of customers in orbit at an arbitrary time instant can be

expressed as follows

PðzÞ ¼ P00 þ ~P0ðz; 0Þ þ ~P1ðz; 0Þ þ
XM

l¼1

Vlðz; 0Þ ð17Þ

In order to find ~P0ðz; 0Þ;~P1ðz; 0Þ; and
P1

l¼1
~Vlðz; 0Þ; the following sequence of

operations is performed.

Multiplying the Eq. (1) by z0, and Eqs. (9)–(15), by zn, taking summation from

n = 0 to 1 and using (16), we get

ðh� kÞ~P0ðz; hÞ ¼ P0ðz; 0Þ � ~RðhÞðP1ðz; 0Þ � P1;0ð0Þ þ kz2 ~P1ðz; 0ÞÞ

þ
XM

l¼1

ðVlðz; 0Þ � Vl;0ð0ÞÞ
ð18Þ

ðh� kÞ~P1ðz; hÞ ¼ P1ðz; 0Þ � ðkP00 þ ð1=zÞP0ðz; 0Þ þ k~P0ðz; 0ÞÞ~SðhÞ ð19Þ

ðh� kþ kzÞ ~V1ðz; hÞ ¼ V1ðz; 0Þ � P1;0ð0Þ ~VðhÞ ð20Þ

ðh� kþ kzÞ ~Vlðz; hÞ ¼ Vlðz; 0Þ � Vl�1;0ð0Þ ~VðhÞ; 2� l�M ð21Þ

Substituting h ¼ k in Eqs. (18) and (19) we have,

P0ðz; 0Þ ¼ ~RðkÞðP1ðz; 0Þ � P1;0ð0Þ þ kz2 ~P1ðz; 0Þ þ
XM

l¼1

ðVlðz; 0Þ � Vl;0ð0ÞÞÞ ð22Þ

P1ðz; 0Þ ¼ ~SðkÞðkP00 þ ð1=zÞP0ðz; 0Þ þ k~P0ðz; 0ÞÞ ð23Þ

Substituting for P1(z, 0) from Eq. (23) into Eq. (22) we have

P0ðz; 0Þ ¼

ð ~RðkÞð~SðkÞðkP00 þ k~P0ðz; 0ÞÞ þ k~P0ðz; 0Þ � P1;0ð0Þ

þ kz2 ~P1ðz; 0Þ þ
XM

l¼1
ðVlðz; 0Þ � Vl;0ð0ÞÞÞÞ

ð1� ð ~R3ðkÞ~SðkÞ=zÞÞ
ð24Þ
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Substituting for P0(z, 0) from Eq. (22) into Eq. (23) we have

P1ðz; 0Þ ¼

ð~SðkÞðkP00 þ ð ~RðkÞ=zÞðkz2 ~P1ðz; 0Þ � P1;0ð0Þ

þ
XM

l¼1
ðVlðz; 0Þ � Vl;0ð0ÞÞÞ þ k~P0ðz; 0ÞÞÞ
ð1� ð~SðkÞ ~RðkÞ=zÞÞ

ð25Þ

Substituting for P0(z, 0) and P1(z, 0) from Eqs. (24) and (25) into Eqs. (18) and

(19) we have

ðh
� kÞ~P0ðz; hÞ

¼

ð ~RðkÞð~SðkÞðkP00 þ k~P0ðz; 0ÞÞ � P1;0ð0Þ þ kz2 ~P1ðz; 0Þ

þ
XM

l¼1
ðVlðz; 0Þ � Vl;oð0ÞÞÞ � ~RðhÞð~SðkÞðkP00 þ ð ~RðkÞ=zÞ

ð�P1;0ð0Þ þ kz2 ~P1ðz; 0Þ þ
XM

l¼1
ðVlðz; 0Þ � Vl;0ð0ÞÞÞÞÞk~P0ðz; 0Þ

� ~RðhÞð�P1;0ð0Þ þ kz2 ~P1ðz; 0Þ þ
XM

l¼1
ðVlðz; 0Þ � Vl;0ð0ÞÞÞÞ

ð1� ð ~RðkÞ~SðkÞ=zÞÞ
ð26Þ

h�kð Þ~P1 z;hð Þ ¼

ð~SðkÞðkP00þð ~RðkÞ=z0Þðkz2 ~P1ðz;0Þ�P1;0ð0Þþ
XM

l¼1
ðVlðz;0Þ�Vl;0ð0ÞÞÞþk~P0ðz;0ÞÞ

� ð~SðhÞ=zÞð ~RðkÞð~SðkÞðkP00þk~P0ðz;0ÞÞ�P1;0ð0Þþkz2 ~P1ðz;0Þ

þ
XM

l¼1
ðVlðz;0Þ�Vl;0ð0ÞÞÞÞ� ~SðhÞðkP00þk~P0ðz;0ÞÞð1�ð ~RðkÞ~SðkÞ=zÞÞÞ

ð1�ð ~RðkÞ~SðkÞ=zÞÞ

ð27Þ

Substituting h ¼ 0 and solving Eqs. (26) and (27) for ~P0ðz; 0Þ and ~P1ðz; 0Þ we
get

~P0ðz; 0Þ ¼

ðð ~RðkÞ � 1Þðk~SðkÞP00 � P1;0ð0Þ þ
XM

l¼1
ðVlðz; 0Þ � Vl;0ð0ÞÞÞ

ððð ~RðkÞ~SðkÞ=zÞ � 1Þ � z ~RðkÞð~SðkÞ � 1ÞÞ

þ ðkP00 þ ð ~RðkÞ=zÞP1;0ð0Þ þ ð ~RðkÞ=zÞ
XM

l¼1
ðVlðz; 0Þ � Vl;0ð0ÞÞÞ

ð~SðkÞ � 1Þðz2ð ~RðkÞ � 1ÞÞÞ
ððkðð~SðkÞ ~RðkÞ=zÞ � 1Þ � k~SðkÞð ~RðkÞ � 1ÞÞ
ððð ~RðkÞ~SðkÞ=zÞ � 1Þ � z ~RðkÞð~SðkÞ � 1ÞÞ
� ð~SðkÞ � 1Þkz2ð ~RðkÞ � 1ÞÞ

ð28Þ
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~P1ðz; 0Þ ¼

ð~SðkÞ � 1Þð ~RðkÞ � 1Þðk~SðkÞP00 � P1;0ð0Þ þ
XM

l¼1
ðVlðz; 0Þ � Vl;0ð0ÞÞÞ

þ ðððð ~RðkÞ~SðkÞÞ=zÞ � 1Þ � ~SðkÞð ~RðkÞ � 1ÞÞð~SðkÞ � 1Þ

ðkP00 � ð ~RðkÞ=zÞP1;0ð0Þ þ ð ~RðkÞ=zÞ
XM

l¼1
ðVlðz; 0Þ � Vl;0ð0ÞÞÞ

ðkððð ~RðkÞ~SðkÞÞ=zÞ � 1Þ � k~SðkÞð ~RðkÞ � 1ÞÞ
ðððð ~RðkÞ~SðkÞÞ=zÞ � 1Þ � z ~RðkÞð~SðkÞ � 1ÞÞ
� ðkz2Þð ~RðkÞ � 1Þð~SðkÞ � 1Þ

ð29Þ

Substituting h ¼ k� kz, in Eqs. (20) and (21) we have

~V1ðz; 0Þ ¼ P1;0ð0Þð ~Vðk� kzÞ � 1Þ ð30Þ

~Vlðz; 0Þ ¼
Vl�l;0ð0Þð ~Vðk� kzÞ � 1Þ

ð�kþ kzÞ ; 2� l�M ð31Þ

From Eqs. (30) and (31) we have

XM

l¼1

~Vlðz; 0Þ ¼
ðP1;0ð0Þ þ

PM�1
l¼1

~Vl;0ð0ÞÞð ~Vðk� kzÞ � 1Þ
ð�kþ kzÞ ð32Þ

The following theorem is proved on substituting the expressions for
~P0ðz; 0Þ;~P1ðz; 0Þ and

P1
l¼1

~Vlðz; 0Þ from Eqs. (28), (29) and (32) into Eq. (17).

Theorem 1 The PGF P(z) of number of customers in the orbit is given by

PðzÞ¼ ðP00M3þM1þM2Þð�kþkzÞþðP1;0ð0Þþ
PM�1

l¼1 Vl;0ð0ÞÞð ~Vðk�kzÞ�1ÞM3

M3ð�kþkzÞ
ð33Þ

where

M1 ¼ ð ~RðkÞ � 1Þðk~SðkÞP00 � P1;0ð0Þ þ
XM

l¼1

ðVlðz; 0Þ � Vl;0ð0ÞÞÞ

ðððð ~RðkÞ~SðkÞÞ=zÞ � 1Þ � z ~RðkÞð~SðkÞ � 1ÞÞ þ ð~SðkÞ � 1Þ

ðkP00 � ð ~RðkÞ=zÞP1;0ð0Þ þ ð ~RðkÞ=zÞ
XM

l¼1

ðVlðz; 0Þ � Vl;0ð0ÞÞÞðz2ð ~RðkÞ � 1ÞÞ

ð34Þ
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M2 ¼ð ~RðkÞ�1Þðk~SðkÞP00�P1;0ð0Þþ
XM

l¼1

ðVlðz;0Þ�Vl;0ð0ÞÞÞð~SðkÞ�1Þ

þðððð ~RðkÞ~SðkÞÞ=zÞ�1Þ� z ~RðkÞð~SðkÞ�1ÞÞð~SðkÞ�1ÞðkP00�ð ~RðkÞ=zÞP1;0ð0Þ

þð ~RðkÞ=zÞ
XM

l¼1

ðVlðz;0Þ�Vl;0ð0ÞÞÞ ð35Þ

M3 ¼ ðkððð ~R3ðkÞ~SðkÞÞ=zÞ � 1Þ � k~SðkÞð ~RðkÞ � 1ÞÞðððð ~RðkÞ~SðkÞÞ=zÞ � 1Þ
� z ~RðkÞð~SðkÞ � 1ÞÞ � ð~SðkÞ � 1Þkz2ðð ~RðkÞ � 1ÞÞ

ð36Þ

4.2 Computational aspects of unknown probabilities

In this section, the unknown probabilities are expressed in terms of known constant

P00.

Theorem 2 The unknown probabilities P1,0(0),
PM�1

l¼1 Vl;0ð0Þ and the unknown

function
PM

l¼1ðVlðz; 0Þ � Vl;0ð0ÞÞ are expressed in terms of known constant P00 as

P1;0ð0Þ ¼ kP00
~VMðkÞ

XM�1

l¼1

Vl;0ð0Þ ¼
kP00 ð1� ~VM�1 ðkÞÞ
~VM�1ðkÞ ð1� ~VðkÞÞ

XM

l¼1

ðVlðz;0Þ�Vl;0ð0ÞÞ ¼ kP00
ð ~Vðk�kzÞ� 1Þ ð1� ~VM�1 ðkÞÞ

~VM�1ðkÞ ð1� ~VðkÞÞ
þ

~Vðk�kzÞ
~VMðkÞ

� 1

� �

where P00 is the probability that the server is idle and the number of customers in

the orbit is zero.

Proof Substituting h ¼ k in Eqs. (12) and (14) and after some algebra we have

V1;0ð0Þ ¼ P1;0ð0Þ ~VðkÞ ð37Þ

VM;0ð0Þ ¼ V1;0ð0Þ ~VM�1ðkÞ ð38Þ

Substituting for VM;0ð0Þ; V1;0ð0Þ respectively from Eqs. (38) and (37) into Eq. (1)

we have

P1;0ð0Þ ¼ kP00
~VMðkÞ

ð39Þ
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Now, using Eqs. (37–39) and after some algebra we have

XM�1

l¼1

Vl;0ð0Þ ¼ V1;0 þ V1;0
~VðkÞ þ V1;0

~V2ðkÞ þ � � � þ V1;0
~VM�2ðkÞ

¼ V1;0
ð1� ~VM�1ðkÞÞ
ð1� ~VðkÞÞ

¼ k P00 ð1� ~VM�1 ðkÞÞ
~VM�1ðkÞ ð1� ~VðkÞÞ

Now,
XM

l¼1

ðVlðz; 0Þ � Vl;0ð0ÞÞ ¼
XM

l¼1

Vlðz; 0Þ �
XM

l¼1

Vl;0ð0Þ

¼ V1ðz; 0Þ þ
XM

l¼2

Vlðz; 0Þ �
XM

l¼1

Vl;0ð0Þ
ð41Þ

Substituting for V1ðz; 0Þ and Vlðz; 0Þ(2 � l � M) from Eqs. (20) and (21) into

Eq. (41) we have

XM

l¼1

ðVlðz; 0Þ � Vl;0ð0ÞÞ ¼ ð ~Vðk� kzÞ � 1Þ
XM�1

l¼1

Vl;0ð0Þ þ ~Vðk� kzÞP1;0ð0Þ � kP00

ð42Þ

Substituting for
PM

l¼1 Vl;0ð0Þ and P1;0ð0Þ from Eqs. (40) and (39) respectively

into Eq. (42) we have

XM

l¼1

ðVlðz;0Þ�Vl;0ð0ÞÞ ¼ kP00
ð ~Vðk� kzÞ� 1Þð1� ~VM�1 ðkÞÞ

~VM�1ðkÞ ð1� ~VðkÞÞ
þ

~Vðk� kzÞ
~VMðkÞ

� 1

� �

ð43Þ

Hence the theorem is proved. h

5 Stability condition

The PGF P(z) has to satisfy the condition limz!1 PðzÞ ¼ 1. In order to satisfy this

condition L’Hospital’s rule is applied to Eq. (33). Since P00, P1;0ð0Þ and
PM

l¼1 Vl;0ð0Þ are probabilities the numerator of P(z) is positive when z ? 1. So

limz!1 PðzÞ ¼ 1 is satisfied if ~SðkÞ ~RðkÞð1� ~RðkÞ � 2~SðkÞÞ þ 2ð ~RðkÞ þ ~SðkÞ �
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1Þ[ 0 which is the condition to be satisfied for the existence of steady state for the

model under consideration.

To prove the necessary and sufficient condition for the system to be stable, we

study the ergodicity of the embedded Markov chain at the customers’ depar-

ture/collision occurring epochs. Let tk : k 2 zþf g be the sequence of epochs of

either the service completion or collision occurring times at which the server

become idle and Xk ¼ XðtkþÞ be number of customers in the orbit immediately

service completion time or collision occurring time.

Theorem 3 Xk; k 2 Zþf g be an embedded Markov Chain which is ergodic iff

2 1� ~SðkÞ
� �

\ ~RðkÞ.

Proof By Foster’s criterion Pakes (1969), we can prove that the irreducible and

aperiodic Markov chain Xk; k 2 Zþf g is positive recurrent. Let fðnÞ; n 2 Zþ and

�[ 0 be a nonnegative function such that the mean drift Cn ¼

E fðXkþ1Þ � fðXk�Þ=Xk¼n

	 

is finite for all n 2 Zþ : Here Cn ¼

2 1� ~SðkÞ
� �

� ~RðkÞ; n ¼ 1; 2; 3; . . .

2 1� ~SðkÞ
� �

; n ¼ 0

�

Since 2 1� ~SðkÞ
� �

\ ~RðkÞ we have limn!1 Cn\0: This shows that Xk; k 2 Zþ is

positive recurrent. The term 1� ~SðkÞ
� �

implies that the arriving primary customer

enters into the orbit and also 1� ~SðkÞ
� �

implies that the arriving primary customer

proceeds to the server and collides with the customer in service resulting in both

being transformed to the orbit. So, the necessary and sufficient condition for the

stability is 2 1� ~SðkÞ
� �

\ ~RðkÞ: h

6 Performance characteristics

In this section, certain useful performance measures of the proposed model like,

expected number of customers in the orbit, expected length of busy period, expected

length of busy cycle, probability that the server is idle, probability that the server is

busy and the probability that the server is on vacation are derived.

6.1 The mean number of customers in the orbit

The expected number of customers in the orbit is derived using PGF given in

Eq. (33) and LQ ¼ limZ!1
d

dz
PðzÞ. Since the expression for P(z) is too large the

numerical values of LQ are calculated using the software mathematica.

6.2 Expected length of busy period

In this section, we consider a busy period of the system for the model under

discussion. The system busy period Tb starts at an epoch when an arriving customer
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finds an empty system and ends at the next departure epoch at which the system is

empty. Using this, the mean length of the system busy period of this model is

directly obtained by the theory of regenerative processes which leads to the

following limiting probability

P00 ¼ PðCðtÞ ¼ 0;NðtÞ ¼ 0Þ

¼ EðT00Þ
1
k þ EðTbÞ

where T00 is the amount of time in a regenerative cycle during which the system is

in the state (0, 0). It is clear that EðT00Þ ¼ 1
k so that EðTbÞ ¼ 1

k
1
P00

� 1
� �

.

Hence, if Tb is the length of busy period, then under the steady state condition, the

expected length of busy period is EðTbÞ ¼ 1
k

1
P00

� 1
� �

where P00 is obtained from

Eq. (33) using the condition Limz!1 PðzÞ ¼ 1.

6.3 Expected length of busy cycle

If Tc is the length of busy cycle, then under the steady state conditions and by the

argument of alternating renewal process, the expected length of busy cycle EðTcÞ is
obtained as

EðTcÞ ¼ Expected length of busy periodþ Expected length of idle period:

¼ EðTbÞ þ
1

k

¼ 1

k
1

P00

6.4 Probability that the server is idle

Let I be the idle period random variable and let P(I) be the probability that the server

is idle at time t. Using Eq. (28) and applying limit z ? 1 we get the probability that

the server is idle as

PðIÞ ¼ P00 þ ~P0ð1; 0Þ

¼ EðVÞ ð ~RðkÞ � 1Þ
XM�1

l¼1

Vl;0ð0Þ þ P1;0ð0ÞÞ þ P00 ~RðkÞð1� 2 ~SðkÞ
 !

6.5 Probability that the server is busy

Let B be the busy period random variable and P(B) be the probability that the server

is busy at time t. Using Eq. (29) and applying limit z ? 1 we get the probability

that the server is busy as
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PðBÞ ¼ ~P1ð1; 0Þ ¼
ð~SðkÞ � 1Þ ðEðVÞ ð

PM�1
l¼1 Vl;0ð0Þ þ P1;0ð0ÞÞ þ P00 ~RðkÞÞ

ð2� z ~SðkÞ � ~RðkÞÞ

6.6 Probability that the server is on vacation

Let V be the vacation time random variable and P(V) be the probability that the

server is on vacation at time t. Using Eq. (32) and applying limit z ? 1 we get the

probability that the server is on vacation as

P�ðVÞ ¼
XM

l¼1

~Vlð1; 0Þ ¼ EðVÞ
XM�1

l¼1

Vl;0ð0Þ þ P1;0ð0Þ
 !

7 Special cases

In this section, some special cases of the proposed model by specifying the service

time, vacation time and retrial time random variables as K-Erlang, exponential and

hyper exponential distribution are discussed.

Case (i) M/G/1 retrial queue with general retrial time, modified M-vacations and

collision with Erlangian vacation time.

If the vacation time is assumed to be K-Erlang with probability density function,

vðxÞ ¼ ðkuÞkxk�1e�kux

ðk�1Þ! ; k[ 0 where u is the parameter, then

~V ðk� kzÞ ¼ ðuk=ðukþ kð1� zÞÞÞk ð44Þ

Substituting (44) in (33), the PGF of the M/G/1 retrial queue with general retrial

time, modified M-vacations and collision is given as

PðzÞ ¼ ðP00M3þM1þM2Þ ð�kþkzÞþ ðP1;0ð0Þþ
PM�1

l¼1 Vl;0ð0ÞÞ ððuk=ðukþkð1� zÞÞÞk� 1ÞM3

M3ð�kþkzÞ

where M1, M2, and M3 are given by Eqs. (34), (35) and (36) respectively with

XM�1

l¼1

Vl;0ð0Þ ¼
k P00 ð1� ð ðu k=ðuk þ kÞÞkÞM�1Þ

ððuk=ðuk þ kÞÞkÞM�1 ð1� ðuk=ðuk þ k ÞÞkÞ
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and

XM

l¼1

ðVlðz; 0Þ � Vl;0ð0ÞÞ ¼ k P00
ððuk=ðuk þ k ð1� zÞÞÞk � 1Þ ð1� ððuk=ðuk þ k ÞÞkÞM�1Þ

ððuk=ðuk þ k ÞÞkÞM�1 ð1� ðuk=ðuk þ k ÞÞkÞ

 !

þ k P00
ðuk=ðuk þ k ð1� zÞÞÞk

ððuk=ðuk þ k ð1� zÞÞÞkÞM
� 1

 !

Case (ii) M/G/1 retrial queue with general retrial time, modified M-vacations and

collision with Exponential vacation time.

If the vacation time is assumed to be exponential with probability density function

v(x) = ue-ux where u is the parameter, then

~V ðk� k zÞ ¼ ðu=ðuþ k ð 1� zÞÞÞ ð45Þ

Substituting (45) in (33), the PGF of the M/G/1 retrial queue with general retrial

time, modified M-vacations and collision is given by

PðzÞ ¼ ðP00M3 þM1 þM2Þ ð�kþ kzÞ þ ðP1;0ð0Þ þ
PM�1

l¼1 Vl;0ð0ÞÞ ððu=ðuþ k ð1� zÞÞÞ � 1ÞM3

M3ð�kþ kzÞ

where M1, M2, and M3 are given by Eqs. (34), (35) and (36) respectively with

XM�1

l¼1

Vl;0ð0Þ ¼
kP00 ð1� ð ðu =ðu þ k ÞÞÞM�1Þ

ð ðu =ðu þ k ÞÞÞM�1 ð1� ðu=ðu þ k ÞÞÞ

and

XM

l¼1

ðVlðz; 0Þ � Vl;0ð0ÞÞ ¼ k P00
ððu =ðu þ k ð1� zÞÞÞ � 1Þ ð1� ððu=ðu þ k ÞÞÞM�1Þ

ððu =ðu þ k ÞÞÞM�1 ð1� ðu =ðu þ k ÞÞÞ

 !

þ kP00
ðu=ðu þ k ð1� zÞÞÞ

ððu =ðu þ k ð1� zÞÞÞÞM
� 1

 !

Case (iii) M/G/1 retrial queue with general retrial time, modified M-vacations

and collision with Hyper Exponential vacation time.

If the vacation time is assumed to be hyper exponential with probability density

function vðxÞ ¼ cu e�ux þ ð1� cÞwe�wx where x, u, w[ 0 and 0 B c B 1, then

~V ðk� k zÞ ¼ ðu c=ðu þ ðk� k zÞÞ Þ þ ðw ð1� cÞ=ðw þ ðk� kzÞÞÞ ð46Þ

Substituting (46) in (33), the PGF of the M/G/1 retrial queue with general retrial

time, modified M-vacations and collision is given by
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PðzÞ ¼

ððP00M3 þM1 þM2Þ ð�kþ kzÞ þ ðP1;0ð0Þ þ
XM�1

l¼1
Vl;0ð0ÞÞ ððu c=ðu þ ðk� k zÞÞ Þ

þ ðw ð1� cÞ=ðw þ ðk� kzÞÞÞ � 1ÞM3Þ
M3ð�kþ kzÞ

8 Numerical results

In this section, some numerical results are provided to justify the theoretical results

obtained. To study the effect of various parameters on the system performance

measures, the following notations are used and some assumptions are made:

Average arrival rate k

Service time distribution is exponential with parameter l

Vacation duration is exponential or Erlang-2 with parameter g

Retrial rate c

Number of vacations (modified vacations) M

Table 1 and Fig. 2 represent the effect of arrival rate k on the mean orbit size LQ

for M = 4. And also Table 1 shows the way in which the expected busy period and

expected busy cycle changes for different values of arrival rate k. It is assumed that

l ¼ 0: 7; g ¼ 0:5; c ¼ 0:7 : From the table and the figure, the following observa-

tions can be made.

• As arrival rate increases, the mean orbit size increases.

Table 1 Arrival rate k (vs)

mean orbit size LQ, expected

busy period (EBP) and expected

busy cycle (EBC) for M = 4

k M = 4

LQ EBP EBC

0.1 0.2091 1.4793 1.5793

0.11 0.2359 1.7834 1.8934

0.12 0.2646 2.1182 2.2382

0.13 0.2954 2.4858 2.6158

0.14 0.3289 2.8886 3.0289

0.15 0.3657 3.3302 3.4802

0.16 0.4066 3.8149 3.9749

0.17 0.4526 4.3482 4.5182

0.18 0.5052 4.9374 5.1174

0.19 0.5658 5.5917 5.7817

0.20 0.6367 6.3231 6.5231
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• As the arrival rate increases, the expected busy period and expected busy cycle

also increase.

Table 2 gives the effect of vacation parameter on the mean orbit size LQ,

expected busy period and expected busy cycle. In Fig. 3, the mean orbit size LQ is

compared for different arrival rates. The vacation times are considered as

exponential and Erlang-2 with parameters k ¼ 0:3; l ¼ 0: 7; c ¼ 0:7 ; M ¼ 4:
From the table and the figure, the following points are observed.

• As the vacation rate increases, the mean orbit size increases.

• As the vacation rate increases, the expected busy period and expected busy cycle

decrease.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

λ

L Q

M=4

Fig. 2 Arrival rate k (vs) mean orbit size LQ for M = 4

Table 2 Vacation parameter g
(vs) mean orbit size LQ,

expected busy period (EBP) and

Expected busy cycle (EBC) for

M = 4

g Exponential Erlang-2

LQ EBP EBC LQ EBP EBC

1.0 3.9905 7.3590 7.6590 0.9104 17.378 17.678

1.1 4.0250 6.3610 6.6620 0.9559 11.728 12.028

1.2 4.0548 5.6128 5.9128 1.0187 8.2026 8.5026

1.3 4.0803 5.0337 5.3337 1.0991 5.8978 6.1978

1.4 4.1022 4.5751 4.8751 1.1973 4.3319 4.6319

1.5 4.1209 4.2044 4.5044 1.3142 3.2329 3.5329

1.6 4.1368 3.8995 4.1995 1.1416 2.4403 2.7403

1.7 4.1405 3.6449 3.9449 1.6117 1.8550 2.1550
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9 Conclusion

In this chapter an M/G/1 retrial queueing system with general retrial time, modified

M-vacations and collision is analyzed. The PGF for the queue size at an arbitrary

time epoch has been derived. Some system performance measures, such as mean

orbit size, expected length of busy period, expected length of busy cycle, probability

that the server is idle, probability that the server is busy and the probability that the

server is on vacation are obtained. The theoretical development of the model is

justified with the numerical results.
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