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Abstract
In the present work, curing reaction of benzoxazine was studied with the incorporation of different weight percentage of
polypyrrole (PPy). Conventional benzoxazine derived from Bisphenol-F, aniline (BF-a) and bio-based benzoxazine derived
from cardanol, furfurylamine (C-f) were synthesized and studied. Significant change in curing temperature (Tp) was observed
with the addition of PPy to both C-f and BF-a monomers. With the incorporation of 5 wt% PPy, the Tp of C-f significantly
reduced from 245 °C to 185 °C and similarly for BF-a monomer from 226 °C to 165 °C. The plausible mechanism of the
benzoxazine ring opening reaction in presence of PPy is also discussed. Further, scanning electron microscopy (SEM) and X-ray
diffraction studies suggest that the incorporation of PPy leads to the formation of fractal morphology. Consequently, the PPy
inter-layered poly(C-f) and poly(BF-a) matrices contribute to the achievement of low value of dielectric constant (K = 3.39 and
3.83). In addition, PPy interlayer provokes enhanced thermal stability and higher LOI value. Thus, the present work demonstrates
the catalytic role of PPy towards the curing reaction of benzoxazines and its contribution towards thermal and dielectric
behaviour the of resulted matrices.
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Introduction

Polybenzoxazine (PBZ) has emerged as a novel class of alter-
native phenolic thermoset material that replaces traditional
epoxy, phenolic and bismaleimide matrices [1–4].
Polybenzoxazine receives much attention from both academic
and industrial perceptive because of their useful high perfor-
mance properties such as excellent mechanical, electrical, and
chemical resistant behaviour as well as ease of processability,
low out gassing and shrinkage on curing [1, 5–11].
Unfortunately, most of the developed benzoxazine monomers
require high temperature curing (Tp > 200 °C) [12]. For

examples, i) curing reaction of conventional benzoxazine de-
rived from bis-phenol-F, and aniline requires temperature
greater than 225 °C [13, 14], ii) low cost bio-benzoxazines
derived cardanol and furfuryl amine requires temperature
higher than 240 °C [15, 16].

The inadequacy associated with the curing can be alleviated
through the process of i) addition of catalyst and ii) building polar
functional groups on the monomers [17, 18] Designing
monomers with polar functional groups to reduce curing temper-
ature often need industrially insignificant harsh reaction condi-
tion, high cost precursors. Meanwhile, several catalysts such as
organic compounds (toluene sulfonates, diamines, thiols) and
Lewis acids (PCl5, POCl3, TiCl4, AlCl3, FeCl3) were significant-
ly employed to achieve low temperature curing [3, 19]. However,
addition of such catalysts results in high viscosity, which in turn
drops the shelf life in practical use. Hence, the development of
catalytic system that cure benzoxazines without altering the in-
built properties of the resulted matrices is highly warranted.

Recently, various amines were used as efficient catalyst to
lower the curing temperature of benzoxazines [7, 12, 17,
20–22]. For example, Sun et al. performed the curing of
BA-a and BF-a monomers at 150 °C with the addition of
various commercially available amines [23]. Recently, Li
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et al. 2017 prepared aniline-dimer-based benzoxazine (BA–
PADPA), whose polymerization temperature was found to be
low (Tp = 161 °C) [24]. Subsequently, few other research
groups also studied benzoxazine ring opening reactions using
primary amines, secondary amines and amine salts [17, 22,
25]. Zhang et al. 2017 developed a m-phenylenediamine
formaldehyde oligomer and used as accelerator to cure of
benzoxazine resin at 215 °C [20].

Therefore, numerous researches are in progress towards
exploring the catalytic role of different amines. Further, the
amide group are found to be inevitable in curing of benzoxa-
zine rings [24, 26]. For examples, Agag et al. 2010 reported
the amide linkage assisted low temperature curing benzoxa-
zine [22]. Recently, o-trifluoroacetamide functional benzoxa-
zine was prepared by Zhang et al. 2017, which also performed
as a latent catalyst [27]. However, no significant attention has
been focused on the role of amine group present in heterocy-
clic scaffold. Polypyrrole (PPy) is well known conductive
polymer with conjugated heterocyclic five membered ring
holding a secondary amine. Because of its easy synthesis, high
conductivity, excellent stability, low-cost and high yield, great
attention has been focused on the polymer [28, 29].

Till date there are no reports for the utilization of PPy as a
catalyst to achieve low temperature cure benzoxazines.
Inspired from amine catalyzed curing mechanism and our
continuing interest in benzoxazine chemistry made us to study
the present work. Thus, the effectiveness of secondary amine
present in the polypyrrole has been studied towards the curing
of benzoxazines. In the present work, curing behaviour of
conventional bisphenol-F and bio-source cardanol based ben-
zoxazine monomers were studied in the presence of different
weight percentages of PPy. The resulted matrices were studied
for their thermal and electrical properties and the data obtained
are discussed and reported.

Experimental

Materials

Bisphenol-F was received from Anabond R&D, Chennai,
India. Cardanol was purchased from Satya Cashew Products,
Chennai. India. Pyrrole, furfuryl amine, aniline, and formalde-
hyde were obtained from SRL Pvt. Ltd. India. Chloroform,
sodium hydroxide, ammonium persulphate, hydrochloric acid
and tetrahydrofuran were obtained from Merck, India.

Preparation of Polypyrrole (PPy) and benzoxazine
monomers

PPywas prepared as per the procedure reported in literature [30,
31]. 1 mL of freshly distilled pyrrole monomer was dissolved in
50 mL of 1 M HCl and sonicated for 30 min. To this mixture,

the required amount of homogeneous solution of ammonium
per sulphate was dissolved in 50 mL of hydrochloric acid (1M)
andwas slowly addedwith continuous stirring for another 5 h at
0–5 °C in an ice bath. Then, the resulted black coloured product
was washed several times with 1 M HCl and dried in hot air
oven at 60 °C and preserved. Bio-benzoxazine (C-f) was pre-
pared using stoichiometric quantities of cardanol, furfuryl, and
formaldehyde (1:1:2) through Mannich reaction [32].
Conventional benzoxazine (BF-a) monomer was prepared
using Bisphenol-F, aniline and formaldehyde in stoichiometric
quantities (2:1:4) as per the reported procedure. [33]

Preparation of PPy incorporated PBz matrices

Benzoxazine monomers (BF-a and C-f) and different weight
percentages of PPy (0, 1.0, 2.0, 3.0, 4.0 & 5.0 wt%) were
separately added in 10 ml of THF and subjected to
ultrasoniation for 2 h to obtain homogeneous distribution of
PPy. The resulted solution was then poured into respective
silane-coated glass plates and allowed to evaporate at room
temperature for 8 h. The polymerization was initiated via step-
wise thermal curing (120 °C, 160 °C, 200 °C, and 240 °C for
2 h respectively) to obtain the corresponding PPy/poly(BF-a)
and PPy/poly(C-f) matrices. The formation PPy/poly(C-f) ma-
trix is presented in Scheme 1.

Characterization

Fourier transform infrared (FT-IR) spectra were recorded on
Thermo scientific Nicolet 6700-FTIR spectrometer. NMR
spectra were obtained with Bruker (400 MHz) using
dimethylsul foxide (d6-DMSO) as a solvent and
tetramethylsilane (TMS) as an internal standard. The curing
temperature of the monomers as well as thermal stability of
the matrices were determined using TGA-DSC NETZSCH
STA 449F3 Jupiter -German under N2 purge (60 mL min−1)
at scanning rate of 10 °C min−1. X-Ray diffraction patterns
were recorded at room temperature, by monitoring the diffrac-
tion angle 2θ from 10 to 80° on a PANalytical X’pert3 pow-
der, the Netherlands. The morphology of the matrices were
identified from an FEI QUANTA 200F highresolution scan-
ning electron microscope (HRSEM). The dielectric constant
was determined from LCR meter (NumetriQ, PSM – 1735,
UK) at room temperature using platinum electrode from 1 Hz
to 1 MHz.

Results and discussion

Structural analysis

The BF–a and C-f monomers were prepared and their molec-
ular structures are confirmed through spectral studies such as
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NMR and FTIR spectroscopy. The 1H NMR spectra of (C-f)
and (BF-a) monomers are presented in Fig. 1a and b respec-
tively. The 13C-NMR spectra of (C-f) and (BF-a) monomers
are presented in Figs. S1a and S1b (supporting information)
respectively. The appearance of two singlets correspond to the
methylene protons of (-O-CH2-N-) and –N-CH2-Ar) are used
to validate the formation of the benzoxazine monomer. With
respect to nature of precursors, the positions of the peaks
correspond to methylene protons show minor shifts [32–34] .

In the case of C-f, two singlet signals at δ 3.9 and δ
4.9 ppm corresponds to the presence of methylene protons
of oxazine rings. In addition third singlet signal at δ 3.8
corresponds to the methylene protons of furfural moiety.
Moreover, the terminal methyl protons of cardanol moiety
appeared at δ 0.8 ppm. The major signals appeared be-
tween δ 1.0 and 2.0 ppm corresponds to aliphatic chain
protons of cardanol moiety. The multiplet signals appeared
around δ 6.5–7.2 corresponds to the aryl rings. In addition,
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the signals appeared at δ 2.4 and 3.6 correspond to the
protons of unsaturated carbon present in cardanol. This
confirms that the cardanol has mixture of isomers. The
1H NMR spectrum of pure cardanol is also shown in Fig.
S2 (supporting information) with similar signals. On the
other hand, the BF-a benzoxazine shows three major singlet
signals in Fig. 1b. The two signals observed at δ 4.5 and δ
5.5 ppm correspond to the methylene protons of (-O-CH2-
N-) and –N-CH2-Ar) oxazine rings. Further, the singlet sig-
nal appeared at δ 3.9 corresponds to the methylene group
that bridges the two benzene rings of bisphenol-F. Thus, the
NMR observations clearly demonstrated the formation of
benzoxazines. Further, 13C spectra of both monomers were
presented in Fig(s). S1a-b. The spectrum of C-f (Fig. S1a)
showed two signals at δ 51 and δ 80 ppm, which repre-
sents the methylene carbons of benzoxazine ring, whereas
that of methylene carbon of the BF-a moiety (Fig. S1b)
shows signals at δ 60 and 80 ppm. The quaternary carbon
of benzoxazine ring adjacent to oxygen atom appeared in
deshielding region at δ 152 ppm in both molecules. The
observed chemical shift values are in accordance with those
of previous reports [23, 32].

The FTIR spectra of both the monomers (C-f and BF-a) are
presented in Fig. 2a along with PPy. The formations of ben-
zoxazines are confirmed through out-of-plane C-H stretching
of benzene ring attached to oxazine. Both monomers (C-f and
BF-a) clearly exhibits out-of-plane C-H stretching vibration
bands at 935 and 949 cm−1 respectively [35, 36]. The bands
appeared at 1229 and 1033 cm−1 correspond to asymmetric
and symmetrical C–O–C stretching, respectively. The bands
observed at 811 cm−1 of C-f and 820 cm−1 of BF-a, corre-
sponds to the asymmetric stretching vibration of C–N–C
groups. Furthermore, the strong peaks appeared at 2924 and
2846 cm−1 for C-f monomer corresponds to the respective
symmetric and asymmetric stretching of aliphatic –CH2-
groups of cardanol side chain. In addition, the bands appeared
at 1501 cm−1 of BF-a and 1494 cm−1 of C-f corresponds to the
stretching vibrations of trisubstituted benzene rings of both
monomers, respectively. Further, the appearance of bands at
1590 cm−1 and 1285 cm−1 are contributed by the vibrations of
furan ring present in themonomer [36, 37]. Thus, the vibration
spectra confirms the formation of benzoxazine monomers.

The FTIR spectrum of polypyrrole (PPy) was also pre-
sented in Fig. 2a. The occurrence of bands at 1457 cm−1

and 1290 cm−1 correspond to the in plane deformation
and stretching vibrations of C-N bond respectively. The
appearance of peaks at 1044 and 914 cm−1 correspond
to the = C-H of polypyrrole as in accordance with previous
report [38]. Further the bands appeared at 1543 cm−1 cor-
responds to the vibration of C=C bond of the pyrrole
rings. In addition, the formation of polybenzoxazine ma-
trices in presence of PPy were also studied using FTIR
and morphological studies.

Curing behaviour

The curing reaction of both monomers C-f and BF-a were
studied using DSC. The observed thermograms obtained are
presented in Fig. 3a and b respectively. In addition, the curing
behaviours were presented in Table 1. The curing onset of C-f
monomer begins at 220 °C and completes at 268 °C (Fig. 3a),
whereas the BF-a onset begins at 200 °C and completes at
263 °C (Fig. 3b). The appearance of single exothermic peaks
at 249 °C for C-f (Fig. 3a) and at 228 °C for BF-a (Fig. 3b)
confirms the ring opening polymerization as presented in
Scheme 2. Consequently, the tri-substituted benzene ring be-
came tetra-substituted, which results in the formation of three-
dimensional benzoxazines matrices.

The high temperature requirement for curing is the major
difficulty associated with benzoxazines monomers. Earlier re-
ports suggest that amine derivatives are good enough to pro-
vide low curing temperature for benzoxazine through their
catalytic behaviour [12, 20, 21, 35]. Hence, the curing pro-
cesses of both monomers are studied in the presence of nitro-
gen rich conductive PPy in different percentage for the first
time. The observed thermograms are also presented in the
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Fig(s). 3a and b. As expected, the polymerization of both the
monomers were occurred significantly at lower temperatures
(Tp). Further, the appearance of single exothermic peaks even
after the addition of PPy, suggest that the curing occurs in a
single step.

Addition of 5 wt% of PPy offers lower temperatures curing,
beyond which no significant change in the curing temperatures
were observed. Accordingly, Tp of C-f and BF-a in the presence
of 5 wt% are observed at 185 °C (Fig. 3a, Table 1) and 165 °C
(Fig. 3b, Table 1) respectively. Further, notable changes in the
onset of curing temperatures are also observed. The C-f shows
the onset at 130 °C (Fig. 3a, Table 1), whereas that of B-F
shows at 123 °C (Fig. 3b, Table 1). The significant low curing
temperatures observed in the present work are in accordance
with those of various types of amines used to cure benzoxazines
[17, 19, 20, 24, 25]. Thus, similar to oligomeric amines [20],
primary amine [23], and amide [22, 27], the polypyrrole with
secondary amine on five membered hetero rings is also capable
of reducing the curing temperature of benzoxazines.

Meanwhile, during the curing processes the values of change
in enthalpy (ΔH) are observed to decrease with the addition of
PPy (Table 1). This phenomenon suggests that the PPy has a
capability to reduce the exothermic nature of polymerization
process through the formation of low energy activation path.
This observed behaviour is in accordance with those of earlier

reports, which also delivers lower enthalpy during curing reac-
tion in the presence of different amine catalysts [20, 25, 33]. In
addition, present work explores the potential usage of PPy with
a series of secondary amines in five membered ring to reduce
the curing temperature relatively at lower enthalpy. Thus, ob-
servations made in the present work will provide significant
outcome in the field of benzoxazine chemistry. The appropriate
mechanism involving the curing behaviour assisted by PPy in
comparison with polyindole is discussed separately.

The curing of benzoxazines and formation of
polybenzoxazine matrices are studied through FTIR and re-
sulted spectra are presented in Fig. 2b. After thermal curing
the disappearance of the bands at 935and 949 cm−1 for C-f and
BF-a confirms the occurence of ring opening polymerization
of the benzoxazine monomers, which in turn forms the
poly(C-f) and poly(BF-a) matrices respectively. In addition,
it is observed that the peaks corresponding to trisubstituted
benzene rings at 1494 and 1501 cm−1 are also disappeared.
Further, the new bands appeared at 1494 cm−1 of poly(C-f)
and 1485 cm−1 of poly(BF-a) corresponds to the formation of
tetrasubstituted benzene rings, during curing of monomers
[37]. The appearance of broad bands around 3350 cm−1 are
ascertained for the strong overlapping signals for intramolec-
ular and intermolecular interaction of OH with O and N
through hydrogen bonding, which occurred after curing [39].
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Table 1 Curing characteristics of
cardanol and bis-phenol-F
monomers with different wt% of
PPy

Monomers PPy
(Wt%)

Peak Maximum (TP)
(°C)

Curing Temperature Window
(°C)

Enthalpy, (ΔH)
(J/g)

C-f 0 245 220–268 127

1 212 172–239 115

3 195 150–237 94

5 185 130–228 37

BF-a 0 226 200–263 116

1 201 161–244 74

3 178 135–227 56

5 165 123–202 33
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Figures 4 and 5 show the FT-IR spectra of the PPy/poly(C-
f) and PPy/poly(BF-a) respectively. As discussed in Fig. 2b,
the absence of bands at 935 cm−1 (Fig. 4) and at 949 cm−1

(Fig. 5), confirms the ring opening polymerization of the ben-
zoxazines after addition of PPy. In Fig(s). 4 and 5, the disap-
pearance of bands at 1494 and 1501 cm−1 confirms the for-
mation of tetrasubstituted benzene rings. As a result, new band
appears at 1501 cm−1 (Fig. 4) and 1485 cm−1 (Fig. 5) corre-
sponds to the tetrasubstituted benzene rings of poly(C-f) and
poly(BF-a) matrices respectively. The band appeared at
1260 cm−1 corresponds to the C-O-C stretching vibration.
Thus, the formation polybenzoxazine matrices have been con-
firmed post to the addition of PPy.

Mechanism of PPy assisted curing reaction

The general mechanism corresponding to the ring opening
polymerization of benzoxazines is presented in Scheme 2,
which usually requires high temperature. In presence of poly-
pyrrole curing temperature of the benzoxazines were noticed
to decrease, which might be due to the catalytic nature of
polypyrrole. A plausible mechanism for the catalytic action
of polypyrrole is shown in Scheme 3. The lone pair on the
nitrogen atom of the polypyrrole ring on heating initiates the
ring opening of benzoxazine moieties to achieve the
intermediate-I (In-1). Intermediate-1 can further undergo
through two pathways either ‘a’ or ‘b’. In the pathway a, the
highly feasible migration of the lone pair on the tertiary nitro-
gen followed by a prototropic shift results in the formation of
Zwitter ion (iminium nitrogen cation and a secondary carban-
ion) and regenerates the polypyrrole is proposed. Further, the
secondary carbanion of the Zwitter ion attacks the iminium

nitrogen cation of another Zwitter ion as a chain reaction
followed by keto-enol tautomerism ends up in the polyben-
zoxazine network with polypyrrole stacking in between them.

However, in pathway ‘b’, the less feasible migration of the
lone pair on the nitrogen atom of the pyrrole moiety could
only result in the formation of unstable methylene pyrrolium
cation. The above explanation obviously rules out the path-
way ‘b’mechanism and hence pathway a mechanism can only
explain the catalytic activity of the regenerated polypyrrole.

Further, in order to ascertain the catalytic behaviour of PPy,
5 wt% polyindole was incorporated with both the benzoxazine
monomers and their curing behaviour was studied. The ob-
tained data are presented in the Fig. S3. It was interesting to
note that the addition of polyindole doesn’t yield any signifi-
cant contribution in reducing the curing temperature as PPy. It
was observed that, the 5 wt% polyindole incorporated poly(C-
f) and poly(BF-a) shows only Tp value as 228 °C and 202 °C
respectively. This phenomenon shows that addition of poly-
pyrrole with benzoxazines comparatively reduces the curing
temperature than that of polyindole (PI), though both have
similar pKa values. It is expected that the linear and amor-
phous nature of PPy (Fig. 7) favours interaction with benzox-
azine monomers. However, the PI was found to have non-
linear and crystalline morphology (Fig. S4). Because of the
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favoured interaction between PPy and benzoxazine through
the pathway ‘a’ mechanism (Scheme 3), it is concluded that
the PPy has catalytic activity similar to other amines. Further,
to study the interaction between the PPy and polybenzoxa-
zines, the microstructure and diffraction analysis were carried
out and discussed subsequently.

Morphological analysis

The morphology of the prepared polypyrrole, neat poly(C-f)
and neat poly(BF-a) was analyzed using SEM and the images
obtained are presented in Fig. 6. The morphology of PPy was
observed to be granular structured [30]. However, the cured
C-F and BF-a matrices exhibit smooth surfaces representing to
the brittle nature of the resulted polybenzoxazines [40, 41].

Further micrographs observed for PPy incorporated
poly/(C-f) and poly(BF-a) are also presented in Fig. 7.
The curing of both C-f and BF-a in the presence of
1 wt% PPy demonstrates no significant change in the

morphology. The smooth surfaces were observed
to retained even after the addition of 1 wt% PPy. On the
other hand, considerable changes in the morphology of both
poly(C-f) and poly(BF-a) matrices were observed with in-
corporation of higher amount of PPy. Thus, the morphol-
ogies of the poly(C-f) and poly(BF-a) in the presence of
2 wt% PPy are observed to be rough and irregular. The
ring opening polymerization of benzoxazine rings were ini-
tiated on the granular surface of the PPy. Due to the inter-
connected linear network of polypyrrole, ring opening of
the individual monomers are simultaneous initiated, which
could results in rapid curing of monomers as discussed
earlier in DSC. These phenomenon lead to the formation
of PPy inter layered covered with poly(C-f) matrices over
the surface [42]. Meanwhile, the interaction such as hydro-
gen bonding and π–π stacking between polypyrrole with
furan and benzene rings of polybenzoxazines leads to the
inter-layered morphology [18] (Scheme 1). Similarly, the
morphologies of PPy/poly(BF-a) were also analysed. Here,

Scheme 3 Mechanism for the
catalytic activity of polypyrrole in
curing benzoxazine

PPy neat (C-f) neat (BF-a)

Fig. 6 SEM images of PPy, neat(C-f) and neat (BF-a)
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except 5 wt% PPy/poly(BF-a) all other samples possess the
rough surfaces. These observed morphologies are due to the
rigid and brittle nature of bisphenol benzoxazine, and
higher cross-linking nature of bi-functional BF-a compared

to that of monofunctional C-f. However, at 5 wt% the inter-
layered PPy develops more free spaces and fractal morphol-
ogies, which might be due to the higher concentration of
PPy.

Fig. 7 SEM images of PPy/
Poly(C-f) (left) and PPy/Poly(BF-
a)(right)
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Further, in order to substantiate the formation of polyben-
zoxazines over the globular surface of PPy, the XRD analysis
was carried out and presented in Fig. 8a-c. Figure 8a shows
the XRD pattern of PPy with broad peak at 2θ = 26°, which
clearly indicates the amorphous nature of the PPy [28, 43].
The XRD patterns of neat poly(C-f) shows a broad peak at
2θ = 20°, whereas the 3 wt% PPy/poly(C-f) and 5 wt% PPy/
poly(C-f) show peak at 2θ = 19.4° and 18.2° respectively (Fig.
8b). It is significant to notice that the d-spacing values are also
increased with increase in concentration of the PPy in addition
to the chemical shift. At higher concentration of PPy, the for-
mation of crystallinity is clearly attributed from the appear-
ance of new peak at 2θ = 26.8°. Further, d spacing value of the
neat poly(C-f) was observed to be 4.4 nm, whereas the 3 wt%
PPy/poly(C-f) and 5 wt% PPy/poly(C-f) shows d spacing
values as 4.6 and 4.7 nm respectively. This peak shifting and
increase in d spacing might be due to the formation of inter-
layered polypyrrole over which the wrapping of polybenzox-
azine matrices occurred with fractal structure arrangement
[44, 45]. Further, the diffraction patterns of neat poly(BF-a)
shows a broad peak at 2θ = 18.5°, whereas the 3 wt% PPy/
poly(BF-a) and 5 wt% PPy/poly(BF-a) also show similar dif-
fraction pattern at 2θ = 18.5° (Fig. 8c). The d spacing values
are observed to be 4.6 nm for neat poly(BF-a), 3 wt% and

5 wt% PPy/poly(BF-a) respectively. Compared to poly(C-f)
matrices, the poly(BF-a) shows no peak shifting and signifi-
cant change in d spacing values. This might be due to the
presence of high cross-linking and brittle nature of the bifunc-
tional (BF-a) benzoxazines when compared to those of
monofunctional (C-f) monomer. The observed results are also
in accordance with microstructures observed in SEM.

Thermal property

Polybenzoxazine materials are widely used in industrial appli-
cations because of their high temperature resistance and flame
retardant behaviour. However, compared to conventional
bisphenol benzoxazines, the cardanol based polybenzoxa-
zines possess inferior in their thermal stability. Hence, it is
highly desirable to assess the influence of PPy in thermal
behaviour of benzoxazines matrices. The thermal stability of
the prepared PPy/poly(C-f) and PPy/poly(BF-a) matrices are
studied using TGA and resulted thermograms are presented in
Figs. 9 and 10 respectively along with the neat matrices. The
thermal degradation temperature correspond to 1% and 10%
weight loss are presented in Table 2 along with char yield
obtained at 850 °C.

Fig. 8 XRD images of (a) PPy, b
PPy/Poly(C-f) and c PPy/
Poly(BF-a)
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The neat poly(C-f) shows 1%weight loss at 183 °C, where-
as the degradation of 1, 2, 3, 4, 5 wt% of PPy incorporated
poly(C-f) matrices occurs at 211, 233, 247, 254 and 266 °C,
respectively. In case of neat poly(BF-a) matrices, the 1%
weight loss occurs at 352 °C, whereas the after addition of
1, 2, 3, 4 and 5 wt% PPy the 1% weight losses occurs at 361,
366, 370, 373 and 392 °C respectively. Similar behaviour is
also observed with 10% weight losses for both matrices and
the degradation temperatures observed are presented in
Table 2. Thus, the incorporation of 1, 3, 5, 7, 10 wt% PPy
enhances thermal stability to an appreciable extent. It is wor-
thy to mention that the inter-layered PPy network present in
the samples retards the heat transfer and thereby contributes to
the enhancement of thermal stability similar to earlier
reports [46–50]. Further, the char yield of the samples obtain-
ed at 850 °C is presented in Table 2. The char yields of neat

matrices of (C-F) and (BF-a) are observed to be 16.3% and
29.9% respectively, whereas the char yield of 5 wt% PPy/
poly(C-f) and 5 wt% PPy/poly(BF-a) are observed as 23.5%
and 48.5% respectively. In addition to restricting the heat
transfer behaviour, the inter-layered polypyrrole contributes
to the formation of higher volume of char upon heating. As
a result, at high temperatures, the inter-layered polypyrrole
along with polybenzoxazine matrices get carbonized, which
in turn forms a cohesive carbon mass as residual chars [51].

Subsequently, the flame retardant behaviour of the PPy/
poly(C-f) and PPy/poly(C-f) matrices are analyzed and com-
pared with those of neat matrices using the Limiting Oxygen
index (LOI) value. The LOI values were calculated using Van
Krevelen and Hoftyzer relation (eq. 1) [46, 47].

LOI ¼ 17:5þ 0:4 CRð Þ ð1Þ

Here, CR is the percentage char yield of the sample remain-
ing at 850 °C. It is experimentally proved that the materials
having higher LOI values are flame retardant in nature.
Generally, polymers with LOI values greater than 26 are
ranked as excellent flame retardant material. The calculated
LOI values are presented in Table 2. The char yields of both
poly(C-f) and poly(BF-a) matrices are significantly increased
with addition of PPy and thereby contributes for enhanced
LOI values. Thus LOI values of poly(C-f) increased from
24.0 to 26.9 with the addition of 5% of PPy. In case of
bisphenol-F based benzoxazines, the LOI values are increased
from 29.9 to 36.9. The overall enhancement in LOI values
might be due to the presence of thermally stable heterocyclic
core of pyrrole ring inter-layered between the polybenzoxa-
zine matrices as similar to the PPy doped epoxy matrices [51].

Dielectric property

Polybenzoxazines are used in microelectronics applications
depending upon its dielectric properties [52–55]. The low di-
electric materials are used as sealants, encapsulants, etc.,
whereas the high dielectric composites are used as anti-static
coatings, electromagnetic interference shielding, embedded
capacitors, gas sensors, and bipolar plates for polymer elec-
trolyte fuel cells [56, 57]. Thus, based on the dielectric con-
stant value of the polymers the end use was determined.
Hence, it is worthy and highly desirable to study the dielectric
behaviour of the polymer matrices.

Figures 11 and 12 illustrates the influence of PPy in the
dielectric constant behaviour of poly(C-f) and poly(BF-a) re-
spectively. Previously, PPy reinforced polymer matrices de-
livers high dielectric constant behaviour through the high
polarisation behaviour and conductive nature of PPy [29, 38,
58, 59]. However, in the present case the value of dielectric
constant decreases with increase in PPy. Interestingly, this
reverse phenomenon noticed in the current case is attributed
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Fig. 10 TGA profile of neat (BF-a) and PPy/Poly(BF-a)
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to the following reasons, i) low concentration of PPy which is
below the percolation thresholds limit [60], ii) formation of
inter-layered PPy network structure. As discussed in SEM and
XRD, the stacked PPy in between the polymer matrices forms
fractal structure, which in turn forms free space with air voids.
These air voids, whose dielectric value (k = 1) participate ac-
tively and influences dielectric properties of both poly(C-f)
and poly(BF-a) matrices as an insulating layer [61, 62].
Finally, due to inter-layered PPy with free space affords less
interfacial interaction and reduces the dielectric constant. The
formation of inter penetrated network of PPy through stacking
was discussed earlier in XRD. It was observed from dielectric
studies that the value of dielectric constant of neat poly(C-f)
and poly(BF-a) matrices are 4.4 and 4.7 respectively.
However, after incorporation of 5% PPy, the dielectric values
of poly(C-f) and poly(BF-a) are found to be 3.34 and 3.83

respectively. In addition to decrement in cure temperature,
the dielectric constant values are also reduced with the incor-
poration of PPy. Thus, dual functional behaviour of the PPy
has been explored in the present investigation. This phenom-
enon is highly essential for microelectronic application in or-
der to reduce the signal to noise ratio with high propagation
[39, 63, 64].

Conclusions

Curing temperature of two different types of benzoxazines
have been reduced significantly using conductive polypyrrole
(PPy) as a catalyst. The catalytic behaviour of PPy was
analysed using both synthetic and bio-based benzoxazines
namely Bisphenol-F, aniline derived bifunctional (BF-a) and

Table 2 Thermal properties of
PPy/Poly(C-f) and PPy/Poly (BF-
a) hybrid matrices

Matrices Thermal degradation (°C) Char Residue (850 °C) LOI

T1 T10 T30

Neat Poly(C-f) 183 382 441 16.3 24.0

1 wt% PPy/Poly(C-f) 211 387 444 18.3 24.8

2 wt% PPy/Poly(C-f) 233 394 446 19.4 25.2

3 wt% PPy/Poly(C-f) 247 397 448 20.5 25.7

4 wt% PPy/Poly(C-f) 254 399 451 21.5 26.1

5 wt% PPy/Poly(C-f) 266 406 453 23.7 26.9

Neat Poly(BF-a) 136 352 425 31.0 29.9

1 wt% PPy/Poly(BF-a) 153 361 445 36.2 31.9

2 wt% PPy/Poly(BF-a) 162 366 449 39.9 33.4

3 wt% PPy/Poly(BF-a) 171 370 457 42.5 34.5

4 wt% PPy/Poly(BF-a) 177 373 464 46.5 36.1

5 wt% PPy/Poly(BF-a) 181 392 495 48.5 36.9

Fig. 12 Dielectric constant profile of neat (BF-a) and PPy/poly(BF-a)Fig. 11 Dielectric constant profile of neat (C-f) and PPy/poly(C-f)
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bio-based cardanol, furfurylamine derived monofunctional
(C-f) monomers, respectively. The curing temperature (Tp)
of both C-f and BF-a are reduced to the similar extent of
60 °C. In addition, the possible reaction pathway including
the mechanism is also proposed. The studies based on diffrac-
tion analysis and microstructure clearly demonstrates the for-
mation of inter-layered structure of PPy wrapped with poly-
benzoxazines matrices. The generation of free space renders
the low dielectric behaviour in the presence of 5 wt% PPy.
Thus, the present work demonstrates the catalytic role of PPy
to cure benzoxazine matrices in addition to the improvement
of their thermal and dielectric behaviours.
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