

ATGP_RISC-V: Automation of Test Generator

using Pluggy for RISC-V Architecture

B Madhavan

madhavansankar007@gmail.com

http://orcid.org/0000-0001-6119-

9074

 A Kamerish

kamerish160@gmail.com

http://orcid.org/0000-0001-8637-

8191

 R Manimegalai

drrm@psgitech.ac.in

http://orcid.org/0000-0003-1398-

4080

Department of Computer Science and Engineering

PSG Institute of Technology and Applied Research, Coimbatore, India.

Abstract— The reduced instruction set computing (RISC)

architecture is a free and open Instruction Set

Architecture (ISA), which enables a new era of processor

innovation through open standard collaboration. It

directly challenges several well-established processor

families such as intel x-86, Motorola 68k processor. To

thrive an RISC-V ecosystem, the core suppliers need an

independent verification solution to ensure that their

designs are compliant with the ISA specification.

Verification of RISC-V designs become challenging due to

their optional features, implementation flexibility, and

provisions for customer extensions. Hence, a thorough

verification is essential to compete successfully against the

established processor families. Automation is the key for

reducing the time taken for the processor verification. This

paper provides a way to develop an automated tool

ATGP_RISC-V, which uses the same arguments to run all

instruction generators. This helps in verifying the

processor in an efficient way by reducing the time taken to

manually compare the test results.

Keywords—RISC-V, instruction, exceptions, VCS,

verification, testbed, functional verification,

instruction set architecture.

I Introduction

 Functional verification [7] is an important aspect of
the integrated circuit (IC) design cycle. It is vital that
the design is functionally verified and any potential bug
is eliminated at an early stage of processor design.
Processor verification is done in various methods and
stages. Functional verification is the task of verifying
the logic design completely with the rules of
specification. Formal verification helps to
mathematically check the technical requirements.
Intelligent verification is an automation to adapt the
testbench changes in the transfer level code. Emulation
is the process of building a version of design using
programmable logic. Various techniques of functional
verification are as follows; static verification is done to
reduce the verification effort at the Register Transfer
Logic (RTL) level. Static verification is the process of

verifying the design against some predefined rules
without knowing the actual working of design.

Techniques involved in static verification [9] can
contain any of the following like reset domain crossing,

click domain crossing, lint, formal verification and
static checks.

Functional simulation is done to verify the individual
Intellectual Property (IP) or the individual blocks of the
IC. Functional simulation is the process of verifying the
functional behaviour of a design by simulating it in
software. Field Programmable Gate Array (FPGA)
prototyping is the process of verifying the functionality
of the system (IC) on FPGAs and it is done to verify
that the design operates as expected when it is driven
with live data. Emulation is also called as pre-silicon
validation. Emulation is done on a hardware device to
verify the functionality of the system. An emulator can
handle both RTL designs and system-level designs.
Emulation uses live data to find issues in the system
level design. Universal Verification Methodology
(UVM) has a well-defined testbench structure with
predefined set of coding guidelines [12]. It provides a
System Verilog Base Class Library (BCL) for building
advanced reusable verification component. Intellectual
Property (IP) is highly complex and it takes time to
verify it completely.

 The RISC-V architecture is proposed and designed
in the University of California, Berkeley [2]. The
RISC-V process has a wide range of flexibility such as
variable width size with three word-widths 32, 64 and
128 bits. It also has plenty of base parts with
additionally added extension for the ease of both
developer and user. The RISC-V processor operates in
one of the following modes:

1. U-Mode, which stands for user mode, which is

the lowest privileged level.

2. S-Mode, which stands for Supervisor Mode.

3. M-Mode, which stands for machine mode and

has the highest privilege.

Typically, user-level applications will execute in

user Mode. Whenever the application wants an OS

service, it will make a system call. The OS code that

Proceedings of the Third International Conference on Smart Systems and Inventive Technology (ICSSIT 2020)

IEEE Xplore Part Number: CFP20P17-ART; ISBN: 978-1-7281-5821-1

978-1-7281-5821-1/20/$31.00 ©2020 IEEE 484

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on November 18,2020 at 07:15:03 UTC from IEEE Xplore. Restrictions apply.

handles this call will execute in Supervisor Mode, i.e.,

at a higher privileged level. Upon return to the

application, the mode will be lowered back to user

mode. The RISC-V architecture has 17 extensions and

the standard extensions are specified to work with all

of the standard bases [1] and with each other without

conflict. Some of the extensions are listed below

i) M denotes the extension for Integer

multiplication and division

ii) A denotes the extension for atomic Instruction

iii) F denotes the extension for single precision

floating point

iv) D denotes the extension for double precision

Floating point

v) G denotes the shorthand for some of the

extensions like base

vi) C denotes the extension for compressed

instructions.

vii) Q denotes the extension for quad-precision

Floating point.

viii) L denotes the extension for decimal floating-

point

ix) B denotes the extension for bit manipulation

x) J denotes the extension for dynamically

translated languages

xi) T denotes the extension for transactional

memory

xii) P denotes the extension for packed SIMD

instructions

xiii) V denotes the extension for vector operations

xiv) N-denotes the extension for user-level

interrupts and high level interrupts

xv) H denotes an extension for the level interrupts

in H-standard

II Related Work

Imperas developed a tool named Open Virtual

Platform (OVP) for RISC [13]. This simulator is a

multiprocessor emulator used to run unchanged

production binaries of the target hardware. The

riscvOVPsim simulator implements the full and

complete functionality of the RISC-V foundation’s

user and privilege specifications. It has the ability to

simulate nearly a billion instructions in a very short

period of time. Ivannikov institute for system

programming has developed a tool for processor

verification [5]. This work presents MicroTESK, a tool

that automates the construction of test program

generators for microprocessors. MicroTESK for RISC-

V is an Instruction Stream Generator (ISG) aimed at

functional verification of RISC-V microprocessors. A

constructed generator consists of the core that

implements architecture-independent generation

methods and the model that holds information required

to generate tests for the corresponding architecture

[10]. MicroTESK extracts this information from

formal specifications of the instruction set architecture

to get the assembly format of the instructions in order

to build the coverage model of the instruction set

architecture. The coverage model is used to construct

the instruction set simulator which is used as a

reference model. Test programs are generated from

test templates, describing the program’s structural and

behavioural properties. Onespin solutions has

developed tools for RISC coverage test. Coverage test

technology is a common software testing technology,

which is the basic requirement of software testing. The

coverage analysis can quantify the completeness of the

test vector. Onespin [8] translates functional

requirements in a formal and simulation executable

format. It capture’s entire circuit transactions in a

concise way similar to timing diagrams [6]. Yang,

Yawen and Zhou have developed a tool which uses

onespin technology to compare two kinds of

mainstream coverage analysis techniques, code

coverage and functional coverage. The covered code,

uncovered code and the software defect in the test

results are analyzed. Simple-uvm is a verification

methodology that is developed based on UVM

(Universal Verification Methodology) standard library.

It builds a reference model through the aspect-oriented

paradigm. It also generates the high functional

coverage test cases based on the knowledge at the

transaction level.

RISC-V DV

RISC-V DV is an UVM based open-source instruction

generator for RISC processor verification written

system verilog [4]. The workflow of RISC-V is shown

in Fig-3. It supports RV64IMAFDC, RV32IMAFDC

instruction set and supported privileged modes are user

mode, machine mode, and supervisor mode. It is built

in Python on top of System Verilog. Python will take

care of the instruction generation by using System

Verilog files. List of instructions needed for all

available extensions is predefined in the System

Verilog files. Target files is written in System Verilog

to specify the ISA about which instruction set is used

for generating instructions. There is a reasonable

amount of YAML files included in the working of a

RISC-V DV instruction generator. These files

specifies a set of rules for executing an instruction

generator. We specify the rules and the mode of

occurrence of instruction in the yaml file via an

attribute called gen-opts. Other functions like

instruction count (no of instructions in the output file) ,

no of fragments into which the output should be

divided, no of branches in the instruction, number of

exceptions (including user-defined and naturally

occurring exception) generated per 100 instruction

Proceedings of the Third International Conference on Smart Systems and Inventive Technology (ICSSIT 2020)

IEEE Xplore Part Number: CFP20P17-ART; ISBN: 978-1-7281-5821-1

978-1-7281-5821-1/20/$31.00 ©2020 IEEE 485

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on November 18,2020 at 07:15:03 UTC from IEEE Xplore. Restrictions apply.

generation and more. VCS is an RTL (Register transfer

logic) simulator. It is a tool used for compiling verilog

source code into object (.o) files. VCS invokes the C

compiler (cc, GCC) to create an executable file

which simulates your design. Spike, which is also

called as Instruction Set Simulator (ISS) implements a

functional model of one or more RISC-V harts. Spike

supports the verbose mode to decode the generated

instructions.

III ATGP-RISC-V: The Proposed Methodology for

Test Program Generation

The flow of the proposed methodology for test program

generation is illustrated in Figure. 1.

Figure 1. The Proposed Verification Methodology for

RISC-V Processor

First the target file, which is the file on which the

whole program will work on will be chosen using

runtime interface. Then the yaml file corresponding to

the target config file will be chosen. The files with

.yaml extensions are the files which specifies the

nature of the input and the input values for the system.

These yaml files has a specific standard syntax

associated with it. This file is used by the assembler

and it decodes this file with that prescribed syntax.

Since this file is used for supplying the input values,

at-most care should be taken during its fabrication.

RISCV-DV is the tool which is involved in the test

program generation. The output test-list consists of

two stages called assembly unit test and torture testing.

In assembly unit test [11], sanitary testing occurs

where the basic functionality of the assembly code is

tested. In torture test, we have a mix of logical

sequences which is executed upon the output file from

the tool. This makes the output look more attractive.

Design under test (DUT) [3] is a product which

performs testing of a file. The DUT testing is classified

into initial testing and life cycle testing. In initial

testing, the first phase of the design is tested. In life

cycle testing, review is made in the later stages. This

report also shows the errors in the assembly code, and

ways to correct it. After successful testing, the code

with the corresponding output is made into a single

executable file called the golden model plugin. This

workflow is shown in Figure. 1.

Figure 2. Workflow of RISC-V DV

Proceedings of the Third International Conference on Smart Systems and Inventive Technology (ICSSIT 2020)

IEEE Xplore Part Number: CFP20P17-ART; ISBN: 978-1-7281-5821-1

978-1-7281-5821-1/20/$31.00 ©2020 IEEE 486

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on November 18,2020 at 07:15:03 UTC from IEEE Xplore. Restrictions apply.

A. Instructions

This paper focuses on generating

instructions for the RISC-V processor in an optimal

manner. The proposed methodology takes a seed

value from the user or assigns a random seed value

for the generator to generate instructions. The RISC-

V ISA has four base instruction set namely RV32I,

RV64I, RV32E, and RV128I. The base specifies

instructions, control flow, registers with their sizes,

memory and addressing logic manipulation, and

ancillaries. The overall workflow of RISC-V DV is

shown in Figure. 2. The initial phase is executing the

file named simulator.yaml which simulates the code

into the RISC-V core. Then it moves to generate

assembly test instruction. The type of instruction to

be generated is referred from the file testlist.yaml.

This testlist is fed from Instruction Set Simulator

(ISS). The same testlist is also fed from a Register

Transfer Level (RTL) in parallel to the ISS. ISS and

RTL generates log, log2csv, and CSV files. The

assembly tests are fed into the compiler and an elf

file will be generated to act as the supplier for ISS

and RTL. Note that the ISS and RTL files are used in

generating assembly test reports and to compare the

spawned assembly codes. Simulation of both the

results are compared for accuracy of the generated

assembly code instruction. This workflow is shown

in Figure. 2.

B. Exceptions

 At the time of execution of instructions, an
exception may occur. There are many types of
exceptions which may occur in runtime. But in
general, a total of fourteen exceptions are defined:
Three memory exceptions are defined for memory
access namely fetch, load, store/AMO, and nine
misaligned address, page fault (address translation),
access fault (physical memory attributes and
protection), illegal instruction, CSR access rights
violations, non-existing or reserved opcodes and
encodings, other instructions in unprivileged mode
(call/return), breakpoint (fetch, load, store of
debugged address) , environment call, three separate
exceptions based on originating mode (M, S, U).

Exceptions are classified into two types. They are

synchronous and asynchronous exceptions.

Synchronous exceptions are listed below:

• instruction_access_fault

• illegal_instruction

• breakpoint

• load_address_misaligned

• load_access_fault

• ecall_mmode

• ecall_umode, ecall_smode.

Asynchronous exceptions i.e. interrupts, are listed

below:

• timer interrupt

• software interrupt

• external interrupt.

There are exception handlers which handles the

exception when generated. An exception can be

handled or ignored. A trap occurs when an

exception is handled, The trap processing involves a

transfer of control from a place where the trap has

occurred to a trap handler routine. The trap handler

routine is shown in Table 2. Trap processing

consists of some hardware operations, such as

modifying a couple of hardware lags, saving the PC,

and effecting a transfer of control to the first

instruction of the trap handler routine. These

exception handlers maintain the flow of the program

execution and prevents the program from sudden

termination. Exception handler handles the

exception and return back to the same place where

the exception is generated and so, order of execution

is also maintained.

Table-2: List of Exception Handlers

Exceptions handlers Function

trap_load_access_fault

There is no file in the

desired folder

illegal_instr_handler For Unimplemented and

illegal instructions

trap_misaligned_exce

ption

If the target address is not

4-byte aligned

trap_instruction_acces

s_fault

Access to this user is not

valid

mmode_instr_handler Trying to operate from u-

mode or s-mode

store_fault_handler When the store instruction

is misaligned

load_fault_handler When the load instruction

is misaligned

instr_fault_handler When the given instruction

resuls into an error

ebreak_handler When control is not

properly transferred to the

debugging environment

mtvec_handler when mtvec has a writable

value

pt_fault_handler When the exception relates

to an error

Proceedings of the Third International Conference on Smart Systems and Inventive Technology (ICSSIT 2020)

IEEE Xplore Part Number: CFP20P17-ART; ISBN: 978-1-7281-5821-1

978-1-7281-5821-1/20/$31.00 ©2020 IEEE 487

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on November 18,2020 at 07:15:03 UTC from IEEE Xplore. Restrictions apply.

Exceptions are rare events that are triggered by

the hardware and force the processor to execute

an exception handler. There are exception

handlers in the host file which gets invoked

when instruction generation overrides the

bounds given by the user. These exception

handlers ensure that the execution process is not

interrupted. There are many kind of handlers

like trap_illegal_access_exception which gets

generated when user account changes during the

execution of the instruction.

load_access_fault_handler is called to manage

the scenario where the source file is missing

from the given destination. ebreak_handler is

standard used by GCC-compiler to stop the

execution flow and return back into the

debugger. This also marks the code that should

not get executed during the program flow.

Another main purpose of ebreak is that it

supports semihosting. This is a type of host

which alters the execution environment such

that it has a debugger initialised inside it that

provides an alternate service to an interface

which is around ebreak.

IV Implementation for Test Program Generation

We start the execution of the program from

the file named run.py in the command line. This

python file can get the following parameters in the

command line (instr_cnt, num_of_sub_program,

no_fence, no_data_page, boot_mode, no_csr_instr).

These generator options can also be given in the

testlist.yaml. Testlist contains type of tests that can

be executed on a particular given data. The test

instruction is passed using a specific language. The

python file finds the appropriate test specified in the

test list YAML file and searches for the target in the

target directory. If no test is specified in the

command line then all the test gets executed. Custom

targets can be added in the RISC-V DV framework

to generate instructions for a specific extension but

the targets created should be included in the run.py

python file. Run.py file is the root file for all the

process occurring in the system. It contains the list of

test generators and codes for handling the runtime

environment according to the test input. First it calls

the setup_parser function which is used for setting

the arguments which is to be used in runtime. Then,

it calls get_generator_cmd where it looks into the

file testlist.yaml which is given as input. Run,py then

peaks into the template file and finds the matching

simulator. If no simulator is found, then it returns

with the message stating that it cannot find the

specified vcs simulator. After finding the matching

test and target specified, it complies the testlist file

with the specified test and converts the information

into binary (machine readable) format. If

compilation is successful, then it invokes

do_simulate function where simulation starts for the

output generation. The seed value is created in

simulation phase. This seed value is used to retrieve

(or) regenerate the same report which is executed at

that time when seed value is generated. The output

may vary time to time and the seed value acts as the

identity for every simulation. Then the gen function

comes into role where it instructs the compiler to

setup the compile and simulation command for the

generator. Then it compiles and runs the instruction

generator. It follows with iss simulation,

compilation, and generation. The next stage is the

compilation stage where we generate three types of

files namely asm, elf, and binary. asm file is the

output in Hexadecimal format. The generated

instructions are stored in the directory specified in

the run.py file. This can also be manipulated to set a

custom output directory. The output directory

contains asm-test folder which contains binary,

object and source file. Each output also contains a

seed value used to generate the same type of

instructions.

A. Automated Test Program generation using

Python-pluggy

Pluggy is the solidified core of plugin

management and also a hook calling system for

pytest. This executes as a part of normal program

execution, and also enhances certain features of it.

This promotes the flexibility of the user to greater

heights where user gains privilege to expand and

modify the characteristics of the host program. This

is achieved by installing a plugin for that program.

The basic motive of pluggy is to split the given code

into fragments so that dependency of user on the

output increases efficiently. Pluggy, in the core form

can be classified as internal and external pluggy

modules. The internally created pluggy hold the

rules defined by the developer which should be

followed to operate on it. The external pluggy is the

area for the user to create an own pluggy which is a

derived version of pluggy based on the rules defined

by the developer. Pluggy is also used for integerating

various different types of components under one

roof. Here we have integerated riscv ovp-sim, aapg,

instruction generation and exception handler when

any error occurs during the generation of instruction.

Proceedings of the Third International Conference on Smart Systems and Inventive Technology (ICSSIT 2020)

IEEE Xplore Part Number: CFP20P17-ART; ISBN: 978-1-7281-5821-1

978-1-7281-5821-1/20/$31.00 ©2020 IEEE 488

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on November 18,2020 at 07:15:03 UTC from IEEE Xplore. Restrictions apply.

B. Overview of Pluggy Components

The Host program contains hook functions

and their implementation which is part of the

program. ATPG will implement the prescribed

hooks. It also participates in the execution of the

program whenever these implementations are

approaching the host. ATPG connects host and

plugins by hook implementations, hook

specifications and also by hook callers. Hook

implementations are taken from the registered

plugins. Hook specifications defines call signatures

given by the host. Hook caller acts as a call loop

which is triggered at appropriate positions in the

program. The triggers are invoked in the host during

the implementations and the results are collected.

The host.py file contains the list of plugins available

and moves to the specified area by getting a choice

as input from the user. Pluggy contains the host

program and the necessary components that host

uses in it. Both the pluggy and host has its own path

setting variable. It is generally advised that plugin

and the host to be installed in the same environment

to avoid unnecessary errors. The readme file in the

pluggy clearly defines the users on how to work with

pluggy. It helps users in difficult times like when

there occurs an error which cannot be understood by

the user.

C. RISCV-DV Pluggy

The overview of the files present in RISCV-

DV pluggy is shown in figure-4. This pluggy

contains the main file for instruction generation and

the files associated with the set of instructions. The

pluggy created here is termed as Automated Test

Program Generator (ATPG). The RISCV-DV pluggy

contains an input file which specifies the

characteristics of the output file and other optional

parameters such as number of instructions, amount

of exceptions, jump instructions and more. The

init.py file starts the code simulation which contains

the input filename and the exact location of the file

in the ATPG. The readme file in ATPG contains a

short description about the contents in it and the

mode of operation done on it. It is the sensitive part

of the setup because the user operates on the ATPG

tool based on the understanding they get from this

file. The instruction generation starts from the

triggering done in the file named instruction. Here,

the input file is processed and the desired attributes

are selected. Then the output directory is locked

where the results are getting stored with the filename

which gives the information about the generated

output. The output location will not be reside in the

setup since the generated files depend on the user

and so any changes made are reflected only in user’s

local directory. ATPG uses VCS simulator and spike

tools which should be pre-installed in the hardware

where the execution takes place. A seed value

generated for each execution of a test file. Seed

value acts as a unique id for the generated test. Even

when the same test is executed after some time, the

seed value for the second test gets changed. This

seed value, if specified in the input module will

generate the same instruction as the previous one.

Figure 3: Pluggy Workflow

V Experimental Results

Components of ATPG contains setup file

and the ATPG plugin folder. The plugin contains

host, hookspecs and lib files. ATPG automates the

tests program generation using the concept of

pluggy. The components of ATPG is shown in

Figure 4. Sample ebreak handler has been shown in

Figure 5. This handler is invoked during the

execution of the program when it encounters a trap

named trap breakpoint. This is shown in figure 5.

Figure 4. File Components of ATPG

Proceedings of the Third International Conference on Smart Systems and Inventive Technology (ICSSIT 2020)

IEEE Xplore Part Number: CFP20P17-ART; ISBN: 978-1-7281-5821-1

978-1-7281-5821-1/20/$31.00 ©2020 IEEE 489

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on November 18,2020 at 07:15:03 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Sample code for ebreak handler

Figure 6. Occurrence of an Exception

Figure 6 shows a part of the generated test program

where the exception has been generated and a trap

handler has been invoked. Now the flow of control

will be transferred to exception handler shown in

figure 5. After the successful execution of the trap

handler, the control once again returns to the test

program and continues the execution. ATPG, by

using the concept of pluggy has automated the

tedious process by running various test

concecutively. Hence, ATPG solves the problem in a

robust way.

VI Conclusion

 The proposed RISC-V project defines and
describes a standard instruction set architecture
(ISA). RISC-V is an open-source specification for
computer processor architecture. Based on the
performance and the growing need for
interoperability among vendors, it appears that the

Proceedings of the Third International Conference on Smart Systems and Inventive Technology (ICSSIT 2020)

IEEE Xplore Part Number: CFP20P17-ART; ISBN: 978-1-7281-5821-1

978-1-7281-5821-1/20/$31.00 ©2020 IEEE 490

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on November 18,2020 at 07:15:03 UTC from IEEE Xplore. Restrictions apply.

RISC-V standard will gain more importance in
future. RISC-V architecture holds good scope in the
field of processors in the upcoming months. This
work also focus on handling few pre-defined
exceptions with instruction generation methods that
results in minimising the no of errors. But the rate of
exception generation is a major issue in these
processors and it has been solved here by changing
the exception handlers and also the user instruction
generation methods. This paper deals with the tool
which has been developed under the concept of
python-pluggy. It automates the test program
generation processes and reduces the human effort
and time involved in processor verification. There are
certain limitations in this work such that it cannot
work on the errors other than the error described
previously. It is also not capable of analysing the
cause for errors. Also there is no automated program
to automatically define the new errors. Error
definition is still manual in this work.

References

[1] Andrew Waterman et al., The RISC-V Instruction Set Manual,

Volume I: UserLevel ISA, Version 2.1,online report available at

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-
118.pdf

[2] Andrew Waterman et al.,The RISC-V Instruction Set Manual

Volume II: Privileged Architecture Version 1.7, online report

availabe at http://www2.eecs.berkeley.edu/Pubs/TechRpts
/2015/EECS-2015-49.html.

[3] Victor Jimenez Arador, S. in Verification Strategy for a RISC-V

Core Design, in polytechnic University of Catalonia 2019, pp, 2-4.

[4] Billie Thompson , riscv-dv, online tool available at

https://github.com/google/riscv-dv.

[5] M. Chupilko, A. Kamkin, A. Kotsynyak, A. Protsenko, S. Smolov

and A. Tatarnikov, Test Program Generator MicroTESK for RISC-

V, 19th International Workshop on Microprocessor and SOC Test
and Verification (MTV), 2018, pp. 6-11.

[6] Yang, Yawen & Zhou, Shan & Kong, Lu. Coverage Test

Technology Based on ONESPIN Verification Platform. Journal of
Physics: Conference Series. 2018, 1026.012004. pp. 5-6.

[7] Xie, Z. & Wang, T. & Yong, S. & Chen, X. & Su, J. & Wang, X. A

RISC CPU oriented reusable functional verification platform based
on UVM. 2018, 50. 221-227. PP 2-3.

[8] Yang, Yawen & Zhou, Shan & Kong, Lu. Coverage Test

Technology Based on ONESPIN Verification Platform. Journal of
Physics: Conference Series. 2018, 1026.012004.

[9] Aijaz Fatima , The ABCs of functional verification techniques,

online report available at https://www.analogictips.com/what-are-

abcs-of-functional-verification-techniques/

[10] Chupilko, Mikhail & Kamkin, Alexander & Kotsynyak, Artem &

Tatarnikov, Andrei. (2017). MicroTESK: Specification-Based Tool
for Constructing Test Program Generators. 217-220.

[11] N. Gala, A. Menon, R. Bodduna, G. S. Madhusudan and V.

Kamakoti, SHAKTI Processors: An Open-Source Hardware
Initiative, 29th International Conference on VLSI Design (VLSID),
2016, pp. 7-8.

[12] Gala, Neel & Madhusudan, Gs & George, Paul & Sahoo, Anmol &

Menon, Arjun & Kamakoti, SHAKTI: An Open-Source Processor
Ecosystem. Volume 2, issue 3, 2018. PP 4-5.

[13] Gajendra Kumar Ranka, Dr. Manoj Kumar Jain , a validation of

sim-a with ovpsim, Journal of Global Research in Computer
Science Volume 2, No. 6, June 2011. pp. 2.

Proceedings of the Third International Conference on Smart Systems and Inventive Technology (ICSSIT 2020)

IEEE Xplore Part Number: CFP20P17-ART; ISBN: 978-1-7281-5821-1

978-1-7281-5821-1/20/$31.00 ©2020 IEEE 491

Authorized licensed use limited to: University of Prince Edward Island. Downloaded on November 18,2020 at 07:15:03 UTC from IEEE Xplore. Restrictions apply.

