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A B S T R A C T

The most recurrent side effect of diabetes is diabetic foot ulcers and if unattended cause imputations. Diabetic feet
affect 15% to 25% of diabetic people globally. Diabetes complications are due to less or no awareness of the
consequences of diabetes among diabetic patients. Technology leveraging is an attempt to create distinct,
affordable, and simple diabetic foot diagnostic strategies for patients and doctors. This work proposes early
detection and prognosis of diabetic foot ulcers using the EfficientNet, a deep neural network model. EfficientNet is
applied to an image set of 844-foot images, composed of healthy and diabetic ulcer feet. Better performance is
obtained compared to earlier models using EfficientNet by carefully balancing network width, depth, and image
resolution. The EfficientNet performed better compared to popular models like AlexNet, GoogleNet, VGG16, and
VGG19. It gave maximum accuracy, f1-score, recall, and precision of 98.97%, 98%, 98%, and 99%, respectively.
1. Introduction

Diabetic foot ulcers (DFUs) are foot injuries and serious cases of
diabetes. Reports indicate that there were only 151 million diabetic in-
dividuals worldwide in the year 2000, this number increased to over 422
million in 2014 and has been raised to approximately 537 million in
2021. The prevalence of diabetes disease attained an increase of 10.5%
among adults over 18 years of age between 2000 and 2021 years. By the
end of 2035, the number of diabetic persons is expected to rise to 630
million, as given in Table 1.

In addition, 80% of these patients live in developing countries, which
lack healthcare facilities and are less aware of patient health conditions
[1]. Diabetes foot affects 15% to 25% of these diabetic patients and may
face a final stage of foot ulcers which will cause their lower limbs to be
amputated, hospitalization of the patient, and finally the death of the
diabetic patient when there is no correct treatment [2,3]. Amputation of
the foot or limb may occur by the infection of DFUs [4]. The rate of
survival is less significant for patients with amputated limbs. It impairs
the quality of life, and livelihood, and affects even social participation
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[5]. Gangrene will be the result of such causes and tissue death due to
disease. The burden of diabetes (DFU) seems to increase in the future [6].
Because of the lack of resources and the scarcity of specialists in the
treatment of diabetic foot ulcers, more than a million diabetic patients
who are at elevated risk of diabetes will lose part of their foot every year.
It is observed that for every 20 sec one diabetic foot is operated on. Fig. 1.
(a)-(d) presents the healthy & normal foot and Fig. 1. (e)–(h) shows the
ulcers on the foot of diabetic patients.

A comprehensive analysis of medical data is necessary for pro-
fessionals to establish an accurate diagnosis. Traditional diagnostic
methods are labor-demanding and prone to human errors. The use of
computer-assisted diagnostic procedures lowers costs while enhancing
performance. Recent developments in mobile and wearable health de-
vices help control diabetes and its consequences by extending remission
and improving the quality of life for patients by sensing and controlling
harmful foot pressure and inflammation [7]. Sensors are tools that
identify physical, chemical, and biological signals and offer a mechanism
to quantify and record such signals. Numerous industrial sensor tech-
nologies have medical uses. When novel sensors and sensor-dependent
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Table 1
Facts and estimates of the prevalence of diabetes& diabetic foot ulcer as of 2021.

At the glint Year

2000 2021 2030 2045

World adult (19–79 years) population (in
billion)

3.2 7.9 8.6 9.5

Number of people with diabetes (in million) 151 537 643 783
Prevalence of diabetes (in percentage) 4.6% 10.5% 11.3% 12.2%
Diabetic foot ulcer with 15% prevalence (in
million)

22.65 80.55 96.45 117.45

Number of people with diabetes in India (in
millions)

32.7 74.2 101 124.9
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mechanical systems are developed and tested, non-medical sectors will
adapt them for use in their industrial applications. The emergence of
new-generation medical sensors suggests the expanded use of these tools
in the healthcare industry [8]. In the modern digital healthcare system,
medical imaging [9–11] is utilized to diagnose various patient problems.
The effectiveness of traditional Machine learning (ML) & Deep learning
(DL) classification methods for tackling classification issues in medical
imaging is strongly dependent on feature selection and extraction tech-
niques that are sensitive to shapes, sizes, and colors. In previous studies,
using machine learning and convolutional neural network techniques,
the researchers obtained high accuracy in detecting DFUs. Although
much research has been done but still not yet across multiple functions
which might be in the real world. Proper diagnosis and management of
DFUs ensure a better prognosis. Diabetic foot management [12] is based
Fig. 1. Diabetic foot images (a)–(d) Normal and healthy
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on vascular resection procedures, infection treatment, and wound
removal. The treatment and type of apparel present differ on the condi-
tion and wound type on the foot. DFU challenge is a sequence of scho-
lastic challenges facing DFU care-related activities to work
comprehensive comparisons of detection, segmentation, and classifica-
tion [13] methods and assess the state-of-the-art with potential applica-
tions [14].

The scope of this work is to detect diabetic foot disease by applying
new Convolutional neural network (CNN) techniques and study the
comparative analysis of these models [15]. The proposes of this experi-
mentation is to use the deep learning method, EfficientNet, based on a
hybrid deep CNNmodel for the automatic classification of the image into
the diabetic and normal foot with the help of many techniques like re-
sidual connections, dropout layers, global average pooling layers, and
data augmentation [16]. The EfficientNet model makes use of all three:
width, depth, and resolution to make a prediction model for diabetes foot
ulcer identification. The advantage of the proposed model leads to early
detection, diagnosis, and prognosis techniques in the diabetic foot ulcer
dataset [28].

The enduring part of the document is structured into five sections,
section 2 considers the literature survey, and the study carried out by
various authors on diabetic foot ulcer detection ideas. In section 3 the
methodology incorporated, the process of augmentation, description of
the image set, and CNN models. Section 4 has the details about imple-
mentation. Discusses result analysis and state of an art comparison of
work and finally, a conclusion is made in section 5.
foot. (e)–(h) Foot affected by a diabetic foot ulcer.



Fig. 2. Block diagram of the proposed methodology.
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2. Literature survey

To know the existing works, a literature survey is conducted. The
following is the gist of the papers related to the proposed work.

Maria Kaselimi et al. (2022) provided a thorough analysis of the
literature on Artificial intelligence (AI) assisted DFU monitoring tech-
niques, and it addressed the benefits of those techniques as well as the
difficulties in adapting them into a workable and reliable framework for
adequate remote patient management. In this paper, they discussed the
employed imaging strategies and associated optical sensors [17] for
detecting diabetic foot ulcers. The study considers both the sensors'
properties and the patient’s physiology. Different monitoring tactics
were supported by the data source, and these places limitations on the AI
tools that are adopted [18].

Anastasios Doulamis et al. (2021) suggested a non-invasive photonic-
based device for treating Diabetic foot ulcers (DFUs) in individuals with
diabetes. The device used thermal and hyperspectral imaging concepts to
assess the condition of an ulcer. The oxyhemoglobin and deoxy-
hemoglobin biomarkers were estimated using this photonic-based im-
aging approach. With the aid of super-resolution techniques, the device
was enhanced with embedding signal processing technologies using deep
learning for pixel accuracy improvement and noise reduction [19].

Sujit Kumar Das et al. (2021), suggested a special network (Dfu_SP-
Net) built on stacked parallel convolution layers to classify the DFU data.
For feature abstractions, Dfu_SPNet used three different kernel size
blocks of parallel convolution layers. With an AUC of 97.4%, the
Dfu_SPNet surpassed the existing state-of-the-art findings after being
trained on the DFUNet dataset using the SGD optimizer with a 1e�2

learning rate [20].
Alzubaidi L et al. (2020) provided 754-foot image data from various

patients, both having healthy and diabetic ulcers. For the automatic
categorization of DFU images, a deep CNN called DFU_QUTNet was
suggested. Adding more layers to a conventional CNN made it very deep
but do not improve performance. As a result, the DFU_QUTNet network
3

was built to enlarge the network's width while maintaining its depth in
comparison to contemporary networks. Gradient propagation was shown
to benefit greatly from the DFU_QUTNet network because the error was
returned over a few different channels [21].

Mingxing Tan and Quoc V. Le, (2019), made a comprehensive anal-
ysis of model scaling and showed that performance can be improved by
carefully balancing network width, depth, and resolution. Based on this
discovery, they put forth a novel scaling technique that employed a
straightforward but incredibly potent compound coefficient to equally
scale all three parameters. They created a baseline network using neural
architecture and scaled it up to create the EfficientNets family of models,
which outperformed prior ConvNets [22] in terms of efficacy, accuracy
and by being smaller and faster at inference while achieving an accuracy
of 84.3% on ImageNet [23].

Manu Goyal et al. (2017) recommended the use of conventional
computer vision features for diabetic patients, which constitute a cost-
effective, remote, and practical healthcare option, to detect foot ulcers.
They employed CNNs for DFU classification to identify the feature dif-
ferences in the DFU and healthy skin. They suggested a unique CNN ar-
chitecture called DFUNet with an improved feature extraction method.
DFUNet attained the area under the curve of 0.962 using a 10-fold cross-
validation technique. It performed better than using DL and ML classi-
fiers [24].

Wang et al. (2017) used a capture box to take a snap and determine
the DFU space by using classification by support vector machines in two
stages. The first step of this function was segmentation, which employed
super-pixels. The next step was getting the different features of the image
by doing the extraction in two-staged classifications [25].

Manu et al. (2017) applied the DFU segmentation method of whole-
foot images. Though the system produced powerful outcomes, it has a
few limitations, which include its invalidity on a large dataset and the
practicality which does not exist of having the patient's foot in contact
with the box surface for data collection, which was not permitted in a
healthcare setting due to possible infection problems [26].



Fig. 3. Samples of patches with normal (Healthy skin) and abnormal (Ulcer).

Table 2
Diabetes foot ulcer image data before and after augmentation.

Before augmentation After augmentation

Abnormal foot images 410 844
Normal (Healthy foot images) 434 844
Total Images 844 1688
Augmented images 1055
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From the literature survey, it is observed that diabetes complications
are due to less or no awareness of the consequences of diabetes among
patients. The researchers have worked on the analysis of the DFU
detection using different sensors [27] and CNN models in which either
one or two of the width, depth, or resolution of the image were consid-
ered but not all. Thus, in this deep learning trial model, EfficientNet, all
three features are considered for the prediction model for diabetes foot
ulcer detection. It is possible to observe the status of the severity of the
foot ulcer using the accuracy in the identification of a diabetic foot or a
normal foot and suggest precautions. The model for identifying predia-
betes needs to be developed to suggest taking the proper medications and
preventing further complications.

3. Proposed methodology

The proposed method uses deep convolutional neural network
models that include four stages, namely, the preprocessing augmenta-
tion, training the models applying different DL models & validation, and
prediction as shown in Fig. 2.
3.1. Augmentation of training patches

To function effectively, CNN needs a lot of labeled training data (see
Fig. 3). Furthermore, collecting a lot of medical data is expensive and
challenging. To improve deep learning model performance and prevent
overfitting, we used data augmentation approaches [29–31]. In data
augmentation, we used a variety of image processing techniques,
including rotation, flipping, employing multiple color models, contrast
improvement, and random scaling to create the desired effect. DFU data
4

before and after augmentation is presented in Table 2 and Fig. 4 (a)& (b)
show the samples of augmented images of normal (healthy) and
abnormal (diabetic) foot patches of 244X24pixelsel in size.
3.2. Classification models

In deep learning, a model learns to carry out tasks directly from text
[32], sound [33], or images and can occasionally perform with greater
accuracy than a human. Deep learning is the key technology behind a lot
of high-end advancements like driverless cars [34], voice control in
gadgets like tablets, smartphones, hands-free speakers, sensors, etc., and
many more. It is providing outcomes that were not feasible in the past or
even with conventional machine learning methods. The issue with the
current models is that the depth, width, and resolution are interdepen-
dent, and their values fluctuate depending on the available resources.
ConvNets are difficult to scale, hence most traditional methods scale
them in one of these dimensions. Table 3 presents the standard and novel
hybrid CNN models and their salient features including the number of
layers in the network, and the technique used to design the model. It is
observed that all the models use Rectified Linear Unit (ReLU) as the



Fig. 4. Patches of augmented images. (a) Normal (Healthy foot), (b) Abnormal foot.

Table 3
Deep neural networks with their salient features.

Model No. of
layers

Salient feature

AlexNet 8 Depth
VGG16 16 Very Deep CNN
VGG19 19 Very Deep CNN
GoogleNet 22 The depth and width-based CNN
DFUNET 14 The depth and parallel Conv. with homogeneous

kernels.
DFU_QUTNet 30 Width-based network compared to the depth of the

model.
DFU_SPNet 22 The depth and parallel Conv. with heterogeneous

kernels.
EfficientNet 237 Depth, width, and high resolution
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activation function [35]. The ReLU activation function is a straightfor-
ward calculation that gives an immediate response of the value entered
or 0.0 if the input is 0.0 or less.

AlexNet was the convolution neural network’s first big advancement
model. It has a network depth of eight layers [36]. In 2014, the VGGNet
model was launched. It added more convolutional layers and pooling to
increase accuracy. In VGG, it was determined how the convolutional
network depth affected the accuracy of the system when it came to
large-scale image recognition. Using an architecture with extremely
small (3 � 3) convolution filters, a detailed investigation of networks
with increasing depth shows that raising the depth to 16–19wt layers can
greatly outperform current systems [37]. GoogleNet won first place in the
ImageNet competition held in 2014. It has a depth of 22 layers and also
parallel convolution filters with (1X1), (3X3), and (5X5) pixels [38].



Fig. 5. EfficientNet-B0 execution summary block diagram.

Fig. 6. Accuracy of training and validation.
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3.2.1. EfficientNet
EfficientNet, a deep convolutional neural network, and innovative

architecture can enhance the extraction of key DFU properties. The
width, depth, and resolution of the image had a role in the design of the
solution. The compound scaling approach is used in this experiment and
different scaling dimensions are not independent. An overview of the
various stages in the EfficientNet model is shown in Fig. 5. Increased
network depth is crucial for higher-resolution images, as larger receptive
fields can assist capture similar features that include more pixels in larger
images. Accordingly, network width grows as resolution catches more
fine-grained patterns in high-resolution images with more pixels. These
intuitions imply that scaling multiple dimensions requires coordination
and balance rather than the more traditional single-dimension scaling.
The compound scaling approach uniformly and logically scales the net-
work's depth, width, and resolution using a compound coefficient [23].
Accuracy is not guaranteed by the number of layers in a CNN model
since, for DFU classification to distinguish between normal and abnormal
classes, a more convoluted network structure is needed. In some cir-
cumstances, network performance declines as the number of levels rises,
and a network with few layers and a straightforward structure is
6

adequate.
Comparing the EfficientNet model with other standard models, we

can increase width without noticeably raising computation expenses. The
EfficientNet architecture has various layers like the input layer, batch
normalization, dropout layer, fully connected layer, and output layer
[23]. Above the last fully connected layer, the output layer is located. The
total number of layers in the EfficientNet-B0 is 237. Here in the diabetic
foot ulcer detection system, the input is the diabetic foot image which is
flowing into the system after that the provided image is processed and
augmented. Then comes the main part which is the CNNwhere themodel
will be detecting the ulcers in the given image and the output is provided
as an abnormal foot for the image which consists of an ulcer and normal
which does not consist of an ulcer.

4. Results and discussions

The DFU dataset is split into 60% training, 20% validation, and 20%
testing. In EfficientNet architecture, we used approximately 488 image
patches consisting of 434 & 410, normal and abnormal foot images
respectively. Augmentation is used to increase the number of images to
1688 patches consisting of an equal number of normal and abnormal foot
images. A comprehensive analysis of the model has been carefully made
in the foot image dataset, and the results are shown with accuracy,
precision, recall, MCC, and f1-score using a confusion matrix and graph-
based classification report.

4.1. Results

4.1.1. Performance analysis
Graph analysis assists in understanding models’ performance. As

illustrated in Fig. 6. in the initial stage, the accuracy of the EfficientNet
model was too low during the training and validation, which then
eventually attained maximum value as the number of epochs increased.
With the best value of epoch five, an accuracy of 99% & 96% is reached
for a model during the training and validation, respectively.

4.1.2. Confusion matrix
The projected results of a classification task are summarized in a

confusion matrix. There are two classes in the confusion matrix named
normal (healthy foot) and abnormal (diabetic foot).

The terminologies adopted are as follows: in positive (P), the obser-
vation was successful, and in Negative (N), the observation was unfa-
vorable. True positive (TP), both prediction and observation are positive.



Fig. 7. Confusion matrices (a) EfficientNet-B0, (b) EfficientNet-B1, (c) EfficientNet-B2, (d) EfficientNet-B3, (e) EfficientNet-B4, (f) EfficientNetB5.

Table 4
Performance parameters of EfficientNet-B0 to B5 with different versions.

Classifier (width, depth,
resolution)

Accuracy
(%)

Precision Recall F1-
Score

EfficientNet-B0(1.0, 1.0, 224) 98.54 0.98 0.99 0.98
EfficientNet-B1(1.0, 1.1, 240) 99.53 1.00 0.99 0.99
EfficientNet-B2(1.1, 1.2, 260) 98.58 0.99 0.98 0.98
EfficientNet-B3(1.2, 1.4, 300) 99.53 1.00 0.99 0.99
EfficientNet-B4(1.4, 1.8, 380) 99.52 0.99 1.00 0.99
EfficientNet-B5(1.6, 2.2, 456) 99.05 1.00 0.98 0.99
Average 99.13 0.99 0.99 0.99
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False negative (FN), positive observation with a negative predicted
result. True negative (TN) both observation and prediction are negative.
False positive (FP), is when an observation is negative, but the prediction
is positive.

In Fig. 7. (a)-(f) the confusion matrix of EfficientNet-B0 to B5 models
having two classes abnormal (ulcer) and normal (healthy skin) is pre-
sented. We know for an ideal model the actual and predicted results
should be 100%, but in EfficientNet-B0 to B5 there are some errors
observed. The actual abnormal ulcer is 103 whereas the predicted
abnormal(ulcers) range between 101 and 103. Similarly, the normal
healthy foot is 108 but the predicted value ranges between 106 and 108.
The error of 2% and 1% are observed in the case of the abnormal and
normal foot respectively which is very minimal. Base model, Effi-
cientNetB0 performance was 98.54% accuracy as shown in Fig. 7. (a).
EfficientNet-B1 & B3 have given maximum values for performance pa-
rameters like accuracy, precision, recall, and f1-score as in Fig. 7. (b) &
(c). EfficientNetB4 & EfficientNetB5 have performed moderately. The
overall performance of the EfficientNet model taking the average for
accuracy, precision, recall, and f1-score is 99.13%, 0.99, 0.99, and 0.99
7

as listed in Table 4.

4.1.3. Classification parameters
A classification report is used to assess the accuracy of the prediction

models. Multiple tests are carried out on the dataset to assess the clas-
sification performance of the fine-tuned networks. True positives and
false negatives were used to calculate the metric. The dataset is separated
into two parts: training and testing. Accuracy is the most significant
metric in the evaluation of classifiers and is the ratio of the number of
positive tuples and negative tuples obtained by the classifier model,
taken together, the number of incidents, as given in Exp (1). Recall and
precision are two fundamental criteria for evaluating the suggested
technique that is calculated (Exp 2,3). The efficiency of our model and
fine-tuned models is determined by an f1-score. F1-scores represent the
balance between accuracy (P) and recall (R) (Exp 4). Mathew’s correla-
tion coefficient (MCC) [39] value ranges between 0 and 1 Exp (5). A
value near 1 indicates the model is more reliable and a value towards
0 indicates the model is not reliable as given in Exp (5) [40].

Accuracy¼ TPþ TN
TPþ TN þ FPþ FN

Exp (1)

Precision¼ TP
TPþ FP

Exp (2)

Recall¼ TP
TPþ FN

Exp (3)

F1� score ¼ 2� precision� Recall
precisionþ Recall

Exp (4)



Fig. 8. Matthew’s correlation coefficient of EfficientNet models.

Table 5
Comparison of performance parameters of various models on DFU image set.

Classifier Precision (%) Recall (%) F1-Score (%)

AlexNet 91.1 87.2 89.1
VGG16 92.5 90.7 91.0
DFU_Net þ KNN 93.9 92.8 93.2
DFUNet 94.1 92.7 93.3
DFU_Net þ SVM 95.3 92.9 94.6
GoogleNet 95.6 90.5 93.0
EfficientNet 99.00 99.0 99.0

Table 6
Comparison of the proposed work with existing works carried out on the diabetic
foot ulcer dataset.

Methods and
materials

Results (%) Observations References

AlexNet. AlexNet (Accu)
¼ 91.1%

To study the effect of
increasing the width,
DFU_QUTNet was
created.

[12]

GoogleNet GoogleNet
(Accu) ¼ 95.6%

DFU_QutNet DFU_QutNet
(Accu) ¼ 95.4%

Stacked Parallel
CNN layers-based

network

DFU_SPNet
(Accu) ¼ 96.5%

With the help of the
different filter widths in
the parallel convolution

[21]
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MCC¼ ðTP*TNÞ � ðFP*FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ*ðTPþ FNÞ*ðTN þ FPÞ*ðTN þ FNÞp Exp (5)
(DFU_SPNet) layers and intermediate
layers across each parallel
block, significant
characteristics from the
input images were
retrieved.

Diabetic Foot Ulcer
Neural Network
(DFUNet)

DfuNet (Accu)
¼ 92.5%

The bespoke architecture
of DFUNet and reduced
no. of layers.

[24]

VGGNet VggNet16
(Accu) ¼ 96.2%

Deep Convolutional
Networks, extremely (up
to nineteen weight
layers).

[37]

VggNet19
(Accu) ¼ 97.1%

EfficientNet-B0 to
EfficientNet-B5

EfficientNet-B0
(Accu) ¼ 90.5%

In this model, all three
dimensions of CNN
Width, depth, and
resolution are adjusted to
find an efficient model to
differentiate between
normal feet and diabetic
feet.

(Proposed
Work)

EfficientNet-
B1& B3 (Accu)
¼ 100%
EfficientNet-
B2& B5 (Accu)
¼ 99.06%
EfficientNet-B4
(Accu) ¼
96.23%
Model Average
(Acc) ¼ 98.97%
Where TP is the number of images accurately identified as relevant by the
network. TN is the number of images accurately identified as irrelevant
by the network. The number of images that the network incorrectly
recognizes as relevant is denoted by FP. The number of relevant images
that the network fails to recognize is denoted by FN.

EfficientNet-B0, a baseline network leveraging a multi-objective
neural architecture that optimizes accuracy. Beginning with the base-
line EfficientNet-B0, we use a two-step compound scaling method to scale
it up to EfficientNet-B5, and performances are obtained from the exper-
imentation carried out to understand the effect of using EfficientNet B0 to
B5 and study the difference in the results obtained for EfficientNet-B1 to
B5 [41]. Fig. 8 shows the MCC score of the EfficientNet models B0–B5.
EfficientNet-B1 is a more reliable model followed by B3 and B2.

Table 5 give the results of our proposed EfficientNet in comparison
with various other models. It is observed that the proposed model has
performed well in comparison with other models. With an average of
98.97% accuracy, 99.0% precision, 98.5% recall, and 98.0% F1-score,
EfficientNet has the highest metrics. AlexNet achieved the lowest
values of precision, recall, and f1-score of 91.1%, 87.2%, and 89.1%,
respectively.

5. Discussion

Diabetes complications and diabetic foot infections are due to less
awareness of maintaining a proper diet and no safety measures among
diabetic patients. Giving proper guidance to diabetic patients and care-
givers is essential. Technology leveraging diabetes management has led
to the development of new methods of diagnosis, prognosis, and treat-
ment methods. The use of sensor technology and improved quality of
8

performance of these sensors’ output using deep learning models is
prophesied. The existing models are more complicated and require the
patient to visit the clinical laboratory to give the tests. Devices used in
tests are invasive in nature and proper handling of these is difficult. In the
proposed technique it is possible to capture the foot image using the
camera & image sensors and pass it to a deep learning-based model for
prediction. The results obtained through the proposed model are more
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reliable and efficient compared to existing models as discussed in
Table 6.

5.1. Limitations of the study

The study has the following limitation: (i) In this model it is possible
to classify whether the given foot is diabetic (abnormal) or healthy
(normal) only. It is not possible to online the severity of the pain or the
complication level details.

6. Conclusions and future direction

Recent developments in wearable devices and the miniaturization of
sensors and electronic devices have substantially improved the capabil-
ities of smart sensors in healthcare and medicine applications. The
development of these technologies led to significant contributions to
several applications in many sectors including diabetic foot ulcer detec-
tion. Diabetes patients should have their feet checked for lesions and
should be tested for peripheral neuropathy and peripheral arterial dis-
ease, both of which can cause wounds or ulcerations. Diabetic foot can be
avoided with proper routine foot examinations, glycemic management,
patient education, appropriate footwear, and early referral for pre-
ulcerative lesions. Deep neural network models are explored for the
automatic classification of diabetic foot images into normal (healthy
skin) and abnormal (DFU). This work indicates that EfficientNet based
model has performed better than other CNN models like GoogleNet,
AlexNet, VGG16, VGG19, DFUNet, DFU_QUTNet, and DFU_SPNet on
diabetes foot ulcer image set. The comparison reveals that EfficientNet
has given the highest values of accuracy, precision, recall, and f1-score of
98.97%, 99%, 98%, and 98% respectively.

In the future, it should be extended to classify and predict the diabetic
foot ulcer into neuropathy, ischemia, and Charcot arthropathy or
osteomyelitis.
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