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Abstract: Syzgium cumini (L.) Skeels powder (S. cumini powder), also known as Jamun, is well-
known for its various medical and health benefits. It is especially recognized for its antidiabetic
and antioxidant properties. Thus, S. cumini powder is used in various industries, such as the food
and cosmetic industries. In this work, the fruit of S. cumini was utilized; its seeds were extracted,
dried, and ground into powder. The ground powders were subjected to various techniques such as
physicochemical tests, Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD),
particle size analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy
(EDX), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and antioxidant
analysis. From the physicochemical tests, it was revealed that the jamun seed filler contained
cellulose (43.28%), hemicellulose (19.88%), lignin (23.28%), pectin (12.58%), and wax (0.98%). The
FTIR analysis supported these results. For instance, a peak at 2889 cm−1 was observed and associated
with CH stretching, typically found in methyl and methylene groups, characteristic of cellulose and
hemicellulose structures. The XRD results demonstrated that the crystallinity index of the jamun
seed filler was 42.63%. The particle analysis indicated that the mean (average) particle size was
25.34 µm. This observation was ensured with SEM results. The EDX spectrum results showed
the elemental composition of the fillers. Regarding thermal degradation, the jamun seed filler had
the ability to withstand temperatures of up to 316.5 ◦C. Furthermore, endothermic and exothermic
peaks were observed at 305 ◦C and 400 ◦C, respectively. Furthermore, the antioxidant property
of the powder displayed a peak scavenging activity of 91.4%. This comprehensive study not only
underscores the viability of S. cumini powder as a sustainable and effective particulate filler in
polymer composites but also demonstrates its potential to enhance the mechanical properties of
composites, thereby offering significant implications for the development of eco-friendly materials in
various industrial applications.
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1. Introduction

A global shift towards sustainability is driving the increasing adoption of natural
materials across various industries. Governments worldwide have been advocating for
the utilization of natural materials to minimize environmental impact, and research has
demonstrated the substantial benefits of these materials over synthetic alternatives. Natural
materials, such as plant fibers, are readily available and environmentally friendly. They
also offer advantages such as a lower density and simpler processing methods, making
them highly suitable for a wide range of applications [1–3].

In reinforcing materials, natural fibers and fillers are extensively studied for their
potential to enhance the properties of different matrices. These materials have found
applications across diverse sectors, including the automotive, construction, biomedical,
electronics, and sports sectors [3–5]. For instance, major automotive manufacturers like
Mercedes-Benz [6], Audi A2 [7], Toyota [8], Mitsubishi Motors [8] and BMW [9] have
successfully integrated natural fillers with various matrices to produce components such
as door panels and interior elements. This integration reduces the environmental footprint
and leverages the mechanical advantages of natural fillers.

The following Table 1 summarizes key studies on different natural fibers, highlighting
their composition and properties that align with the applications explored in our study:

Table 1. Composition of different natural fibers and their unique properties.

Material Cellulose (%) Hemicellulose (%) Lignin (%) Unique Properties Ref.

Banana
pseudo-stem 62.24 15.23 18.51 High crystallinity, thermal

stability up to 250 ◦C [10]

Sirisha bark 68.23 13.26 13.25 Stability up to 429 ◦C, suitable for
high-temp applications [11]

Ficus amplissima
root 52.64 10.64 Not reported Thermal stability at 200 ◦C,

crystallinity index of 39% [12]

Acacia caesia bark 37.00 20.00 18.00 Thermal degradation at 308 ◦C [13]

Champagne cork Not reported Not reported Not reported Used to replace rubber elastomer
in various applications [14]

Albizia Saman 61.00 15.00 Not reported High cellulinity supports
structural integrity [15]

Saccharum
Bengalense Grass 54.00 32.00 12.00 Good thermal stability, max

degradation temp around 340 ◦C [16]

The inclusion of these comparisons underscores the relevance of natural fibers like
those derived from Syzygium cumini (L.) Skeels, which is the focus of our study. The physico-
chemical properties of S. cumini seeds, particularly their cellulose, hemicellulose, and lignin
content, along with their antioxidant potential, make them promising candidates as reinforc-
ing fillers in polymer composites. This study aims to explore these characteristics further
and evaluate the practical applications of S. cumini seed powder in various industries.

Antioxidants are essential compounds that counteract harmful molecules known as
free radicals in the body, which are linked to various chronic diseases such as cancer,
diabetes, and cardiovascular ailments [17]. Thus, incorporating antioxidant-rich foods like
S. cumini powder into one’s diet may help to combat oxidative stress and enhance overall
health. The antioxidant potential of S. cumini powder is crucial for its nutritional value and
potential therapeutic applications [18]. S. cumini seeds contain bioactive compounds like
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polyphenols, flavonoids, and tannins, which exhibit antioxidant properties by scavenging
free radicals, thereby protecting cells from damage and lowering the risk of chronic diseases.
Furthermore, research indicates that S. cumini powder demonstrates significant radical
scavenging activity, making it a promising natural source of antioxidants [19,20].

Syzygium cumini (L.) Skeels is a tree in the Myrtaceae family that originated in India and
is now widely dispersed throughout Asia, including Malaysia, Thailand and the Philippines.
The fruits are elliptically shaped juicy berries with a solitary dark brown seed in the center.
Its diameter is about 2 cm, and its length ranges from 1.5 to 3.5 cm. The fruits are distributed
throughout the tree canopy in clusters [17–19]. The main chemical components of the fruit
and seed are anthocyanins (found in the pulp) and other phenolics. Additionally mentioned
were calcium, protein, phenolics, and flavonoids [18,19]. Ayurvedic medicine claims that
S. cumini seeds, leaves, and stem bark can treat diabetes [19]. Beyond these applications,
S. cumini seeds are usually thrown away as waste since they are not very useful for direct
food intake or replanting. These seeds are given new life as useful fillers in composite
materials [20], improving resource utilization and sustainability across a range of industries.
This creative method increases the economic and ecological effectiveness of these seeds
while also decreasing waste.

Based on a detailed literature review, it was observed that the preparation and char-
acterization of S. cumini powder have not been examined in earlier studies. Thus, in this
present work, the authors explored its characteristics using various techniques such as
physicochemical, FTIR, XRD, particle size analysis, SEM, TGA, and DSC. Based on the
observed results, the authors concluded that S. cumini powder could be used as a rein-
forcement for fabricating green composites and utilized for structural-based applications in
various industries.

2. Results and Discussions
2.1. Physicochemical Analysis

The physicochemical composition of S. cumini powder was quantitatively analyzed
and is detailed in Table 2, revealing a diverse distribution of components. The primary
constituent is cellulose, accounting for 43.28% by weight. Cellulose, a homopolysaccha-
ride comprising glucose units, is the predominant structural element in the seed powder.
Although this percentage is lower compared to some natural fillers such as peanut shells
and certain sunflower seed hull fillers, it exceeds the cellulose content found in other
agricultural fillers like rice husks, walnut shells, coconut shells, and soybean hulls [21,22].
This comparative analysis suggests that the mechanical and thermal properties of polymer
composites incorporating S. cumini seed powder might surpass those of composites using
other agro-based fillers [22]. Hemicellulose comprises 20.08% of the S. cumini seed pow-
der by weight, aligning with the levels typically found in other nutshells but lower than
those in walnut shell and soybean hulls, and higher than those in peanut shell fillers [22].
Hemicellulose, known for its impact on water absorption, biodegradation, and thermal
stability, degrades at lower temperatures than cellulose, influencing the overall durability
and stability of the composites [23]. Lignin, an amorphous polymer, comprises 23.28%
of the S. cumini powder. Its presence is beneficial for enhancing the compatibility with
matrix materials and providing a degree of flame retardancy, which is advantageous for
composites used in building materials. Additionally, the filler contains 12.58% pectin,
which plays a role in the water absorption, adhesion, biodegradation, and flexibility of
the composites [24]. The low wax content, at 0.98%, though significant, is lower than that
found in rice husk and comparable to levels in PVNS fillers, which could enhance the
bonding with matrix materials [25,26]. Moisture content is reported at 11.53%, a factor that
could influence porosity, dimensional stability, mechanical properties, and the swelling
behavior of the polymer composites [25]. Lastly, an ash content of 10.76% could impact the
fire-resistant properties and contribute to the elimination of amorphous elements in the
composites [26].
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Table 2. Physicochemical composition of S. cumini powder.

Name of the Filler Density
(g/cc)

Cellulose
(%)

Hemi
Cellulose

(%)

Lignin
(%)

Pectin
(%)

Wax
(%)

Ash
(%)

Moisture
(%) Ref.

Syzygium cumini (L.)
Skeels 0.59 43.28 20.58 23.28 12.58 0.98 10.76 11.53 Present

work

Pistacia vera nutshell
(PVNS) filler 1.32 47.08 26.56 13.74 - 0.92 4.18 7.52 [27]

Rice husk filler 2.2 23–46 19–24 11–32 - 14–16 - 14 [28]

Walnut shell filler 0.51 25.4 46.6 49.1 - - 3.6 - [29]

Peanut shell filler 1.46 44.8 5.6 36.1 - - 3.8 - [30]

Coconut shell filler 0.7 26.6 - 29.4 - - 0.6 8 [31]

Sunflower seed hull
filler 0.69 31–51 13–28 20 - 3 2–6 - [32]

Soybean hulls filler 1.03 20 50 2 30 - 4.3 7 [33]

2.2. FTIR Analysis

The FT-IR analysis of raw S. cumini [34,35] reveals distinct absorption bands corre-
sponding to various chemical functional groups inherent in cellulose, hemicellulose, and
lignin, as shown in the spectrum ranging from 4000 to 500 cm−1 (Figure 1 and Table 2).
Several key peaks are observed, each indicative of specific molecular interactions and
structures. At 3433 cm−1, a prominent peak is observed, attributed to moisture or hydroxyl
groups within cellulose. This peak indicates hydrogen-bonded O-H groups, with its inten-
sity and shape offering insights into the hydrogen bonding network within cellulose and
its interactions with water molecules [36–39]. The peak at 2889 cm−1 is associated with CH
stretching, typically found in methyl and methylene groups, characteristic of cellulose and
hemicellulose structures [36–39]. Additionally, the peak at 2360 cm−1, although potentially
indicating atmospheric CO2 or the presence of triple bonds, might not be directly related to
the primary components of the Jamun seed filler. Instead, this peak may arise from impuri-
ties or environmental factors [40]. A sharp peak at 1730 cm−1 indicates C=O stretching in
the lignin and hemicellulose fractions, suggesting the presence of carbonyl groups within
the JS. This feature is crucial for understanding the compositional and structural properties
of the seed filler [36,41,42]. The peak at 1629 cm−1 is associated with water absorption,
likely due to water molecules absorbed in the sample, as cellulose and hemicellulose are
known to form intermolecular hydrogen bonds with water [41,43,44]. Meanwhile, the
peak at 1465 cm−1 is attributed to CH3 deformation asymmetry in lignin and CH2 bend-
ing, pointing towards the presence of lignin and xylan [36,38,45]. An extensive peak at
1355 cm−1 correlates with C-H bending vibrations, essential for discerning the molecular
structure and interactions within the biomass [36,42,44]. At 1232 cm−1, a peak signifies
C-O stretching in lignin, indicative of ether and phenolic structures, pivotal for compre-
hending the chemical structure of lignin and its potential applications [41,46,47]. The peaks
at 1157 and 1024 cm−1 are indicative of the C-O-C pyranose ring structure in cellulose
and hemicellulose, providing vital information about the polysaccharide backbone and its
conformational aspects [38,42,48]. Lastly, the peaks at 920 and 862 cm−1 are attributed to
the β-glycosidic linkages between glucose units in cellulose, which are crucial for under-
standing the structural integrity and mechanical properties of cellulose [44,46,49]. Table 3
provides the peak positions and allocations of chemical stretching in the S. cumini powder.
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Figure 1. FTIR spectra of S. cumini powder.

Table 3. FTIR peak allocations in the S. cumini powder.

Peak Positions (Wavenumber (cm−1)) Allocations

3433 O–H stretching (moisture or hydroxyl groups
in cellulose)

2889 C–H stretching (methyl and methylene groups
in cellulose and hemicellulose)

2360 Possible atmospheric CO2 or triple bonds

1730 C=O stretching of lignin and hemicellulose
fractions

1629 water absorption

1465 CH3 deformation of lignin

1355 C–H bending

1232 C–O stretching of lignin

1157, 1024 Multiple peaks of C–O–C pyranose ring

920, 862 β-glycosidic linkages between glucose units of
cellulose

2.3. XRD Analysis

The XRD analysis of S. cumini revealed (Figure 2) distinct crystalline peaks at 2θ diffrac-
tion angles of 15◦, 20.54◦, 24.14◦, 26.25◦, 26.5◦, 29.44◦, 30.56◦, 49.74◦, 54.53◦, 67.75◦, and
67.90◦. These peaks correspond to cellulose types I and IV, as confirmed by complementary
FT-IR analysis [50,51]. This alignment of XRD results with FT-IR analysis indicates the
presence of both cellulose types I and IV in S. cumini. The crystallinity index (CI) of S. cumini
was calculated to be 42.63%, indicating the degree of crystallinity relative to its amorphous
content. This CI value is lower compared to other natural fibers such as Lygeum spartum L.
(46.19%), Sansevieria cylindrica (60%), Acacia planifrons (65.38%), and Cissus quadrangularis
root (56.6%) [50,52,53]. For reference, the CI values of various other natural fibers are
reported as Wrightia tinctoria seed fiber (49.2%), Ramie fiber (58%), Sansevieria cylindrica leaf
fibers (60%), Raffia textilis (64%), sisal (71%), jute (71%), flax (80%), and hemp (88%) [51].
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Figure 2. X-ray diffractogram of the S. cumini power.

Furthermore, the crystallite size of S. cumini was estimated to be 0.398 nm, which
is notably smaller than that of Prosopis juliflora (15 nm), Cissus quadrangularis Vapor
(31.55 nm), Cissus quadrangularis root (2.4 nm), and Ferula communis (1.6 nm) [54–56]. It
is important to note that larger crystal size arrangements in natural fibers typically result
in decreased chemical reactivity and water absorptivity. For context, the crystallite sizes
of some other natural fibers are reported as follows: Cissus quadrangularis root (28.05 nm),
Sansevieria cylindrica (86 nm), Prosopis juliflora (15 nm) [57]. R. textilis (32 nm), ramie fibers
(16 nm), cotton fibers (5.5 nm), corn stalk fibers (3.8 nm), and flax fibers (2.8 nm) [51,58].

2.4. Particulate Size Evaluation

In our study, the particle size distribution of Syzygium cumini seed powder was
meticulously analyzed to understand its implications for potential applications in polymer
composites. The results of this analysis are illustrated in Figure 3. The particle sizes of
S. cumini powder were found to range between 1.98 and 127.66 µm, with a mean size of
25.34 µm. Notably, the mode, or the most frequently occurring particle size, was observed
at 49.28 µm. This size distribution is significant as it influences the physical properties of the
composites, such as density, porosity, and surface area, which in turn affect the mechanical
strength and stability of the final product. This evaluation was intended to characterize the
particle sizes resulting from the grinding process of the dried seeds. It was not aimed at
assessing any treatment effects on the seeds themselves but rather the characteristics of the
ground material that could be relevant for its application as a filler in polymer matrices.
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2.5. Morphological Analysis

The surface morphology of S. cumini fillers was meticulously examined using scanning
electron microscopy (SEM) at various magnifications, as depicted in Figure 4. Investigating
the surface morphology is crucial for determining the potential of these particles as effective
reinforcement agents. The SEM images in Figure 4 reveal that the diameter range of
S. cumini particles varies between approximately 1 and 40 µm. The analysis through
SEM supports the findings of the particle size analysis. The SEM images display particles
characterized by a mix of irregular and smooth shapes in diverse sizes. Furthermore,
Figure 4 also highlights the presence of some impurities on the surfaces of the particles. To
enhance the bonding strength with polymer matrices and ensure a higher quality of the
final composite material, it is often necessary to subject natural fillers to chemical treatments
to eliminate these surface impurities.
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Figure 4. SEM micrographs of S. cumini powder.

The EDX analysis of S. cumini is illustrated in Figure 5. The EDX spectrum reveals
the elemental composition of the fillers, predominantly carbon (C) and oxygen (O). This
observation confirms the presence of these fundamental elements in the S. cumini particles.
Additionally, the analysis detected the presence of magnesium (Mg), silicon (Si), aluminum
(Al), iron (Fe), and potassium (K). The detection of these elements suggests the presence of
various impurities within the S. cumini material, indicating that the raw S. cumini particles
are not entirely pure.
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The primary and derivative curves of S. cumini are illustrated in Figure 6. The TGA
data indicate a multi-stage degradation process. In the first phase, degradation occurs
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from room temperature to 136 ◦C, attributed primarily to the loss of moisture with a mass
loss of approximately 6.98%. The second phase, occurring between 136 ◦C and 262 ◦C, is
characterized by a mass reduction of 13.38%. This loss is associated with the decomposition
of hemicellulose and the glycosidic linkages in cellulose [57]. Subsequently, the complete
decomposition of cellulose and the maximal release of volatile materials are observed
between 262 ◦C and 380 ◦C, corresponding to a mass loss of 37.72% [59]. Beyond 380 ◦C,
the residual mass is primarily char. In the DTG analysis, a significant peak at 316.5 ◦C is
evident, indicative of the thermal degradation of cellulose I and the extensive degradation
of α-cellulose. Comparative analysis shows similar peaks in various other natural fibers:
Lygeum spartum at 338.7 ◦C, hemp at 308.2 ◦C, Cissus quadrangularis root at 328.9 ◦C, Aristida
hystrix leaf fiber at 298.2 ◦C, and jute at 298.8 ◦C [52,53,60]. These results confirm that
S. cumini is a viable candidate for composite applications reinforcement withstanding
working temperatures up to 316.5 ◦C.
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The differential scanning calorimetry (DSC) curve for S. cumini fillers, as shown in
Figure 7, supplements our TGA findings by providing additional insights into the thermal
transitions of the material. The DSC analysis identifies an initial endothermic peak at
approximately 305 ◦C, which correlates with the loss of bound moisture and the onset of
hemicellulose degradation. This is followed by a broad exothermic peak around 400 ◦C,
indicative of the extensive degradation of both the lignin and cellulose components present
in the S. cumini particles.

While DSC provides valuable information about the energy absorption and release
during these thermal transitions, it is important to note that the DSC is not used in isolation
to study the degradation process. Instead, it complements the TGA data, which directly
measure the mass loss associated with these thermal events. The consistency of this thermal
decomposition pattern with those observed in similar natural materials, such as almond
and poplar shells, supports the reliability of our analytical approach and corroborates our
findings regarding the thermal stability of S. cumini particles [22].
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2.7. Antioxidant Activity

DPPH activity is a primary method for evaluating the antioxidant properties of natural
products. DPPH can be stabilized by accepting an electron, forming a stable molecule.
Scavenging efficacy was determined by the decrease in absorbance at 517 nm, indicating
the reduction of DPPH to its yellow form. The strong 517 nm absorption band in the
purple methanolic solution suggests the presence of an unpaired electron [61]. In this
study, we aimed to investigate the antioxidant activity of S. cumini powder. The S. cumini
powder exhibited significant antioxidant activity, at 91.4%. These findings align with
previous research [62] which demonstrated the antioxidant capacity of S. cumini powder
to be 93.4%, 92.5%, and 96.2% under shade, sun, and freeze-dried conditions, respectively.
In a separate study, the antioxidant activity of supplemented samples was found to be
lowest in control juice (68.94%), highest in freeze-dried S. cumini powder supplemented
with pear juice (82.63%), and second highest in sun-dried jamun powder supplemented
with pear juice (80.26%) [63]. Ahmed et al. reported that S. cumini extracts of seed and
pulp at a concentration of 1000 µg/mL could scavenge 96.84% and 94.97% of DPPH
free radicals, respectively, while the standard compound ascorbic acid exhibited 98.35%
DPPH free radical scavenging activity [64]. In another study, Babbar et al. analyzed the
antioxidant activity of kinnow, litchi, and grape seed extracts, finding DPPH free radical
scavenging activities of 67%, 83%, and 77%, respectively [65]. In the present study, the
higher antioxidant activity of S. cumini may be due to the presence of phenolic content in
the seed, as in the study conducted by Priya et al. Their research explored the antioxidant,
phenolic-flavonoid content of three different variant of S. cumini seeds [61].

3. Materials and Methods
3.1. Materials

After being extracted from the fruit, the S. cumini seeds were dried in the sun for
approximately a week before being ground into a fine powder in a ball mill. The powder
was then subjected to various characterizations to know the physiochemical contents,
particle size, functional groups, structural and thermal behavior. The process involved in
the preparation of the seed powder is shown in Figure 8.
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2,2-diphenyl-1-picrylhydrazyl were purchased from Himedia Laboratories Pvt. Ltd.,
India. MilliQ RO water (Milli-Q IQ 7003/05/10/15 Ultrapure & Pure Lab Water Purification
System) was prepared in the laboratory.

3.2. Characterization Techniques
3.2.1. Physiochemical Analysis

The physiochemical examination of S. cumini powder was performed to determine the
weight percentages of several components, including cellulose, hemicellulose, lignin, pectin,
wax, and moisture. The density of the filler was also determined during the investigation.
Standard procedures were followed for this evaluation per our preceding reports [66–68].

3.2.2. Fourier Transform Infrared (FTIR) Spectroscopy Analysis

The FTIR analysis of S. cumini powder was performed using an IR Tracer 100 spec-
trometer. (Shimadzu Corporation, Tokyo, Japan) Samples were prepared by mixing the
powdered material with potassium bromide (KBr) at a 1:100 ratio and compressing into
pellets. The analysis was conducted under ambient conditions. Each sample was scanned
over a range of 4000 to 400 cm−1 with a resolution of 4 cm−1. A total of 32 scans were
averaged for each sample to ensure accuracy and reduce noise in the spectral data.

3.2.3. X-Ray Diffraction (XRD) Analysis

The structural properties of the S. cumini powder were examined by a D8 Advance
ECO X-ray diffractometer in the 2-theta range of 10–80◦. Scanning was performed at
4◦/min.

3.2.4. Particle Size Evaluation

The particle size of the S. cumini powder was measured using a Shimadzu SALD-2300
(V 3.1.1) particle size analyzer. Each 100 particles had their size assessed in a variety of
ranges.

3.2.5. SEM Analysis

The morphology of the power was recorded using a scanning electron microscope
(EVO18, CARL ZEISS). (Oberkochen, Germany) Various electron wavelengths, ranging
from 100 to 3000, were used to scan the filler with an accelerated voltage of 10 kV, facilitating
varying magnified levels.

3.2.6. Thermogravimetric Analysis (TGA)

A TGA Q500, (TA Instruments, Lukens Drive New Castle, DE 19720, USA) machine
was used to record the TG curves of the S. cumini powder throughout a temperature range
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of 30 to 700 ◦C at a rate of 10 ◦C/min. The analysis was performed in a nitrogen-filled
atmosphere at a 60 mL/min flow rate.

3.2.7. Antioxidant Property

In the present study, the method previously reported by Naveenkumar et al. was
adapted to assess the antioxidant property of S. cumini powder [69]. The study was carried
out using a UV-vis spectrometer (SHIMADZU UV-1800, Tokyo, Japan) at a wavelength
of 517 nm. DPPH (0.1 mM) was prepared and dissolved in methanol. Followed by this,
1 mL of S. cumini powder (0.1 µg/mL) and 3 mL of DPPH solution were combined, and the
combination was left to incubate in the dark for 30 min. DPPH solution was utilized as a
control, and absorbance was measured at 517 nm. Equation (1) was used to observe the
degradation of DPPH.

% of SCV =
AB − AS

AB
× 100 (1)

where, SCV is the cavenging activity; AB is the absorption of the blank (DPPH + methanol);
and AS is the absorption of the sample (DPPH + methanol + sample)

4. Conclusions

The present work examined the characteristics of jamun seed filler. The filler had a low
density (0.59 g/cc) and considerable amounts of cellulose (43.28%), hemicellulose (20.58%),
lignin (23.28%), pectin (12.58%), wax (0.98%), and moisture (11.53%) were observed. Due to
its lower density, the jamun seed filler can be suitable for fabricating lightweight materials.
The FTIR results revealed various absorption bands that correspond to different functional
groups, such as cellulose, hemicellulose, and lignin. A crystallinity index of 42.63% was
observed. This observation could indicate the degree of crystallinity relative to its amor-
phous content. Furthermore, the crystallite size was estimated to be 0.398 nm. The particle
size analysis reported that the size of jamun filler ranged between 1.98 and 127.66 µm. The
diameter range of the fillers was also confirmed using SEM analysis, whereby the ranges
were observed between 1 and 40 µm. The EDX spectrum results confirmed the presence of
the fundamental elements in the fillers. Moreover, the analysis detected the presence of
magnesium (Mg), silicon (Si), aluminum (Al), iron (Fe), and potassium (K). Thermal stabil-
ity was ensured using a TGA plot, whereby the maximum temperature that the filler was
capable of withstanding was 316.5 ◦C. The endothermal (305 ◦C) and exothermic (400 ◦C)
peaks were noticed from the DSC results. Due to the lower density of jamun fillers, they can
be recommended for automotive applications where weight reduction is crucial to enhance
fuel efficiency and reduce emissions. Furthermore, the filler had a considerable amount of
cellulose, hemicellulose, and lignin present and exhibited notably high antioxidant activity,
suggesting their potential as effective antioxidants. It could be a suitable candidate as
a strengthening agent for various lightweight applications in polymeric composites for
automotive and household industries.
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