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ABSTRACT:  

Mammograms provide a useful tool for diagnosing breast 

cancer. It is very difficult to classify the microcalcifications as 

benign or malignant directly by the radiologist from the 

mammogram images. Therefore in this paper a comparative 

study based on the curvelet and waveatom features extracted 

from the mammograms and classification using various 

classifiers such as Naïve Bayes, ELM (Extreme Learning 

Machine) and complex ELM has been presented which can be 

used as a CAD (Computer Aided Diagnosis) system for 

microcalcification detection. The experimental results were 

obtained by training and testing data with different classifiers 

and were compared using classification accuracy obtained. 

From the results, it was found that the complex extreme 
learning machine was the best classifier for the waveatom 

features.  
 

 

INTRODUCTION:  

Mammography is an X-ray imaging technique specially 

designed for screening soft tissues, i. e., breast tissues and 

provides the first step in identification of breast cancer. Many 

women across the globe die due to breast cancer which is the 

second common cancer affecting women after lung cancer. 

According to American Cancer Society‟s reports in 2013, 

about 39, 620 women will die from breast cancer [1]. The 

number of deaths due to breast cancer can be decreased by 

early screening and increased awareness as well as 

improvements in treatments.  

Microcalcifications are tiny calcium deposits which are signs 

of pre-cancerous changes. They are found as clusters which 

may be scattered over the entire breast or bilaterally over both 

breasts. Currently, mammograms are the widely used tools for 

detection of breast cancer and these microcalcifications appear 

as tiny bright spots in them. There are chances that the 

radiologist may miss out these signs by conventional analysis 

because of the poor contrast obtained in mammograms as well 
as the huge number of cases that they may have to handle 

which may cause errors. Thus, a computer aided system 

integrating the knowledge obtained from radiologist and image 

processing algorithms along with artificial intelligence will 

give us a better detection rate and accuracy and thus can help 

out the radiologist for improved diagnosis. From the given 

microcalcification it is necessary to identify whether they are 

benign or malignant. So far, there has been a lot of research 

going on in this topic which has been listed below. In this 

paper, the proposed algorithm aims to improve the 

classification accuracy rates compared to the previous works 

that have been carried out in the same field.  

 

 

LITERATURE SURVEY:  

Elthouky et al classified mammogram images from MIAS 

database based on curvelet features using Euclidean distance as 

a classifier which had an accuracy rate of 98. 59% [2]. J. S. 

Leena Jasmine et al employed non subsampled contourlet 

transform and artificial neural network for classification of 

microcalcifications in mammogram images obtained from 
MIAS database with average classification rate of 83. 9% [3]. 

Xinshen Zhang et al used a twin support vector machine and 

other subspace learning methods like PCA, LDA, TSA and 

GTDA for microcalcification detection and showed an 

accuracy of 93. 98±1. 23 for the General tensor discriminant 

analysis with the twin SVMs[4]. Sandeep Palakkal et al 

removed Poisson noise from images by combining fast discrete 

curvelet transform and wave atom with multi scale variance 

stabilising transform[5]. Fang Liu et al proposed image 

hashing scheme using waveatom since it had significantly 

sparser expansion and better characteristics of texture feature 

extraction than other traditional transforms [6]. Issam El-Naqa 

et al used a Support Vector Machine (SVM) approach for 

detecting microcalcification in mammograms which is based 

on the principle of structural risk minimization and sensitivity 

as high as 94% was achieved [7]. Fatima Eddaoudi and Fakhita 

Regragui detected microcalcification in mammograms using 

Haralick features extracted from texture coded images obtained 

from MIAS database and classified them using SVM classifier 

with a classification rate of 95. 6% [27]. Eliza Hashemi 

Aghjekandi detected microcalcificatiom in mammograms 

using wavelet transforms and statistical measurements 

involving skewness and kurtosis [8]. Zehira et al performed a 
comparative study of different transforms and showed that 

wave atom transformwas more appropriate for finger print 

image compression [9]. Hamid Soltanian-Zadeh et al presented 

a comparison of multiwavelet, wavelet, Haralick and shape 

features to detect microcalcifications in mammograms using a 

k-nearest neighbour classifier after feature selection using 

binary and real valued genetic algorithms. The area under the 
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ROC curve for the best set of features raged from 0. 84-0. 89 

and 0. 83-0. 88 while using real valued and binary genetic 

algorithms respectively which was by the multiwavlet features 

that outperformed the other three [16]. Sonyang Yu et al 

detected microcalcifications using a mix of wavelet features 

and gray level statistical features and classified it using a 

general regression neural network via sequential forward and 

sequential backward selection methods and achieved 90% 

mean true positive detection rate [10]. Nikhil R. Pal et al 

proposed a multi-stage detection of microcalcification from 

mammograms obtained from MIAS database that selected 

features using a multilayer perceptron network and the 
classification was done based on the calculation of mountain 

potential for calcified and normal images separately[24]. J. 

Jiang et al used the genetic algorithm on images obtained from 

DDSM database and when it was tested fully on all the images 

(300 mc and 300 normal) whose area under the ROC curve 

was 0. 987[25]. E. Malar et al proposed a comparison among 

statistical texture features, Gabor filter based techniques and 

wavelet features based fast machine algorithm using Extreme 

Learning Machine (ELM) for the detection of clusters of 

microcalcification in digital mammograms with classification 

accuracy as high as 94% for wavelet features [11]. S. Anand et 

al proposed directionlet transform for sharpening and 

enhancement of mammograms and then those features were 

used for detection of microcalcification and spiculated masses 

in digitized mammograms. The features were represented in 

terms of enhancement measure and structural similarity [12]. 

R. Savitha et al have used fast learning CCELM in real valued 

classification of mammograms as benign or malignant with 

100% classification accuracy compared to ELM and SVM 

classifiers. Further they have also used it in the classification of 

emitted acoustic signals based on the source of sound and 

achieved an accuracy of 99. 27% with only 10 neurons [19].  

 
 

MATERIALS AND METHODOLOGY:  

(i) The DDSM Database 

The images obtained for analysis are from a standard database 

such as DDSM (Digital Database for Screening 

Mammography)[26] which has been maintained by the 

University of South Florida. It contains approximately 2500 

studies which contains two images of the breast, associated 

patient information along with some image information.  

 

(ii) Methodology 

After pre-processing the images with procedures such as label 

removal, ROIs of size 512 x 512 were obtained and then used 

for feature extraction. They were appropriately divided into 

training(94 images for both benign and malignant) and testing 

sets(94 which were used for training and testing the different 

classifiers and to hence find out the most efficient among all 

the classifiers used. The norm and energy were obtained from 

the features. The waveatom transform was a single level 

decomposition whereas the curvelet transform resulted in a 

seven level decomposition. These in turn were used to classify 

the data as benign and malignant. Given below is an image pre-

processing step, i. e, the extraction of an ROI (Region of 
Interest) which is the base for the next processing steps. The 

picture shown below illustrates the steps involved in 

preprocessing. The image below (Fig. 1) is the left 

mediolateral oblique view obtained from the DDSM database 

of a sixty eight year with a tissue density factor of 2.  

 

 
Fig. 1 a) Left MLO view from DDSM database, b) square 

ROI selector, c) 512x512 ROI 

 

 

CURVELET TRANSFORM:  

A number of research work has been carried out in the area of 

diagnosing breast cancer with the features extracted from the 

mammograms using curvelet transform [2, 20]. The description 

of the curvelet transform implemented via the wrapping 

algorithm is given below.  

The curvelet transform is a multiscale-directional transform 

through which objects with edges can be given an optimal non-

adaptive sparse representation. The curvelet approach requires 

few coefficients to account for edges and so can easily handle 

discontinuities. The steps involved for computing curvelet 

transform are [23]: (1) Subband decomposition, (2) Smooth 

Partitioning, (3) Renormalization and (4) Ridgelet Analysis.  

 
There are two ways by which curvelet transform can be 

implemented:  

 Curvelets via Unequally Spaced Fast Fourier Transform 

 Curvelets via Wrapping 

 

Let W(r) and V(t) be a pair of windows representing radial 

window and angular window respectively. These are smooth, 

nonnegative and real-valued, and W takes positivereal 

arguments andis supported on r ∈(1/2, 2) and V takes real 

arguments and is supported on t ∈[−1, 1]. These windows obey 
admissibility conditions 

 

  (1) 

 

  (2) 

 

For each j≥ , a frequency window Ujdefined in the Fourier 
domain by 

 

Uj(r, θ)= , 

 

where  is an integer part of j/2. The support of Ujis a 

polar wedge defined by the support of W and V, the radial and 

angular windows. Define the waveform  by means of its 

Fourier transform = Uj( ) 
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is the mother curvelet from which all curvelets at 

scale are obtained by rotations and translations of .  

A curvelet coefficient is the inner product between an elementf 

and a curvelet C(j, l, k)= , 

where R is a real line. [2] (3) 

In this paper the curvelet transform has been implemented 

using the wrapping algorithm. The advantages of using this 

method are that its implementation is a numerical isometry and 

has effective computational complexity 6 to 10 times than that 

of an FFT operating on an array of the same size, making it 

suitable for large scale applications.  

The curvelets via wrapping has been described below with 

basics steps:  

Step 1: Compute 2D Fast Fourier Transform (FFT) coefficients 

to obtain Fourier samples  = [ ].  

Step 2: Interpolation, for each scale and angle pair (j, l), = 

[ ]  = [ ].  

Step 3: Wrap result of step 2 around the origin and obtain = 

[ ]= ) [ ], where the range  and are 

0  and 0  

Step 4: Implement the inverse 2D FFT to each  to obtain the 

discrete coefficients.  

 

The Fourier frequency plane of each image is split into radial 

and angular wedges in first two steps, because there is a 

parabolic relationship between the length and width of the 

curvelet in Figure. Each generated wedge corresponds to 

curvelet coefficients at a given scale and angle pair. The data 
re-index around the origin in step 3. Figure 2a and 2b illustrate 

original and warped segments around the origin, respectively. 

Finally, inverse FFT is implemented to get curvelet 

coefficients in the spatial domain.  

 

 
 

Fig. 2 Curvelet tilting in frequency domain [2] 

 

 
 

Fig 3a. Original segment. b. Wrapped segment around the 

origin [20] 

 

 

In this algorithm, the curvelet transform with seven levels of 

decomposition has been performed out of which the norm and 

energy is calculated for the first hundred coefficients after 

arranging the coefficients in descending order.  

 

 

WAVE ATOM TRANSFORM 

The waveatom transform has been used for applications as 

suggested in [5, 6, 9, 13, 15]. Therefore, in this paper, this 

method has been extended by implementing it on mammogram 

images and further classification as benign or malignant 

microcalcification using a classifier. The description of the 

waveatom transform has been given below.  

Wave atoms are represented as (x), with subscript μ=(j, m, 

n)=(j, m1, m2, n1, n2). All fivequantities j, m1, m2, n1, n2 are 

integer-valued and index a point( , )in phase-space, as 

 

, ,  (4) 

 

where C1, C2 are two positive constants. Heuristically, the 

position vector , is the center of (x)and the wave 

vector determines the centers of both bumps of (ω) as 

± . Note that the range of m needs to be further reduced to 

>0 (or =0 and >0) to account for the central 
symmetry of the Fourier transform of real-valued functions 

about the origin in ω. Some further restriction on n (cutoff in 

space) and j (cutoff in scale), are of course necessary in 

practice, but not for the description of a frame of  

Wave atoms then need to obey a localization condition around 

the phase-space point( , ).  

The elements of a frame of wave packets{ } are calledwave 

atoms when 

 

+

 for all M 0 and 

 

 for all M 0 [13]  (5) 

 

Wave atom transform algorithm is similar to that of curvelet 

transform with O(N log N) in 1D algorithm and O(  log N) in 

2D[14].  
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Wave atoms take complex values in frequency domain. The 

name “wave atoms” comes from the property that they also 

provide an optimally sparse representation of wave propagators 

with applications to fast numerical solvers for wave 

equations[15]. Wave atoms yield better asymptomatic rates 

when compared to curvelets. For wave atoms the wavelength 

and the diameter are linked by parabolic scaling,  

Wavelength~  
 

Phase-space localization of the wave packets require that 

•  in x, the essential support of (x) is of size ∼ vs.  

as scale j ≥ 0, with oscillations of wavelength 

∼ transverse to the ridge; and 

•  in frequency ω, the essential support of (ω) consists of 

two bumps, each of size ∼  vs.  as scale j, at 

opposing angles and distance ∼ from the origin.  

 

Two parameters α and β are generally used to describe any 

wave packet architecture:  

α suggests how the scale of decomposition is and β indicates 
how the waves are directed, i. e., directional selectivity. A 

value of β=0 means best selectivity and β=1 means poor 

selectivity. For curvelets α=1 and β=1/2 whereas wave atoms 

are defined as α=β=1/2 [14].  

 

 
 

Fig 4. Requirements of a single wave packet defined by the 

parameters α and β, in space (left) and in frequency (right) 

 

 
 

Fig 5. Identification of various transforms as (α, β) families 

of wave packets. 

 

 

 

 

FLOWCHART:  

 

 
 

 

EXTREME LEARNING MACHINE:  

The Extreme Learning Machine has been used for various 

applications like multi-category sparse data classification [18], 

for classification of mammographic classifications [11], for 

human face recognition system [21] and for image quality 

assessment [22].  

Here, the ELM classifier has been used for classification of 

microcalcifications as benign or malignant with the help of 

features extracted using the curvelet and waveatom transform. 

These results are then used for comparison with various other 

classifiers to identify the classifier that gives more accurate 
classification. Given below is the working mechanism of the 

ELM classifier.  

Extreme Learning Machine is a single layer feed-forward 

neural network, which follows least square based approach 

[17] that can randomly choose hidden nodes unlike other 

classifiers which require to see the training data and the output 
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weights of the SLFNs are analytically determined. It can not 

only achieve small training error but also a very small norm of 

output weights are also obtained. The activation function used 

in ELM are even discontinuous or nondifferentiable functions 

[18]. The advantages of using ELM as a classifier are good 

efficiency, quick learning speed, easy implementation and 

minimum human intervention. The ELM can obtain the 

solutions directly without trivial issues such as local minima, 

improper learning rate and overfitting, etc.  

Let { } be a set of N distinct samples, where = [ , 

… ] represents the input features and = [ , 

…… ] represents its coded class label and with L 

hidden nodes and activation function G(x), the ELM classifier 

function that assigns class label with desired accuracy can be 

written as 

 

Y=F(X) (6) 

 

The output of the ELM function with H hidden neurons is 

shown below:  

 

= ( )= , where k=1, 2, …, C (7) 

 

Where  represents the C x H hidden layer neurons,  

represents H xninput layer weights and  represents H x 1 bias 

of hidden neurons.  represents output of lth hidden neuron 

and G(. ) is the activation function. If the activation function is 

sigmoid, it is written as 
 

 where l=1, 2, …, H (8) 

 

And for a radial basis function (RBF), the activation function is 

defined as 

 

 where l=1, 2, …, H (9) 

 
The above equation (7) can be represented in a matrix form as 

well 

 

= , where =   (10) 

 
and is called hidden layer output matrix of the neural network. 

By knowing the output , we can estimate the output weights 

analytically from the formula =Y , where  is called 

Moore-Penrose generalized pseudo-inverse of .  
 

 

CIRCULAR COMPLEX ELM:  

According to the results in [19], the CCELM classifier has 

been used for the classification of acoustic signal emission 

(with five input features) and the classification of breast mass 

in mammograms as benign or malignant (with nine input 

features) and the average classification accuracy obtained in 

both were 99. 17 and 100 percent respectively. Apart from this 

it was also implemented in problems of image segmentation, 

vehicle classification and glass identification problems and 

these results were compared with other classifiers. In this 

paper, the CCELM classifier has been used for the 

classification of mammograms as benign or malignant based 

on the waveatom and curvelet features extracted from the 

images and a comparison of the classifiers has also been 

studied.  

Due to the presence of inherent orthogonal boundaries, 

complex valued ELM networks perform better than the real 

valued networks. It is similar to the normal ELM network that 

chooses random hidden nodes and calculates the output 

weights analytically with a difference in activation functions, i. 

e., circular transformation for input layer, complex function 

such as „sech‟ for hidden layer and linear function for the 

output layer [19].  
The CC-ELM classifier is a single hidden layer network with m 

input neurons, K hidden neurons and C output neurons. The 

circular transformation that transforms the real valued input 

features to the Complex domain (

 is given by 
 

), l = 1, 2... m (11) 

 

Where  are non-zero constants and  is the input 

normalised feature in [0, 1]. The scaling factors a, and b, and 

the translational, rotational bias term  are randomly chosen 

such that 0 <a, b 1, and 0 < < 2 . These operations make 
the input features well distributed in the complex plane and 

hence CC-ELM exploits the orthogonal decision boundaries of 

the fully complex-valued networks more efficiently.  

The neurons in the hidden layer of CC-ELM employ a fully-

complex valued „sech‟ activation function which is Gaussian 

like. The response of the jth hidden neuron ( ) is given by 

 

, j=1, 2, …, K  (12) 

 

where K is the number of hidden neurons,  is the 

complex-valued scaling factor of the jth hidden neuron, 

is the complex-valued center of the jth hidden neuron 

and the superscript T represents the matrix transpose operator. 

The neurons in the output layer employ a linear activation 

function. The output ( ) of CC-ELM 
network with K hidden neurons is 

 

, n = 1, 2, …C  (13) 

 

where is the output weight connecting the jth hidden neuron 

and the ith output neuron.  

 

The estimated class label ( ) is obtained using 
 

  (14) 

 

The output of CCELM classifier in equation (13) is as follows:  

 

=   (15) 
 

where, W is the matrix of all output weights that connect 

hidden neurons and output neurons. H is the response of 

hidden neurons for all training samples.  

The output weights are estimated by least square methods as:  
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W=Y ,  (16) 

 

where is the generalized Moore-Penrose pseudo-inverse 

[22] of the hidden layer output matrix and Y is the 

complexvalued coded class label.  
 

 

RESULTS AND DISCUSSION:  

The mammogram images have been obtained from the DDSM 

(Digital Database for Screening Mammograms). In this paper a 

total of 370 images have been used of which 184 images are 

benign and 186 malignant. From these two categories, the data 

were split into training (92 for benign and 94 for malignant) 

and testing sets (92 for both benign and malignant). After the 

feature extraction using the respective transforms (curvelet and 

waveatom), the norm and energy from the features were 

calculated. The distribution of the norm and energy obtained 

for the curvelet and waveatom features for both the classes 

have been shown using the box plot.  

 

 
 

 
 

Fig 7. Norm and Energy features obtained from waveatom 

features showing two different microcalcification classes, i. 

e., malignant and benign 

 

 
These features (shown in Fig. 7)obtained show that there is a 

difference in the values between the benign and malignant 

images which is identified by the classifier and then used for 

classification.  

The performance of various classifiers such as Naïve Bayes, 

ELM and CCELM are compared and the results are validated 

by means of a various parameters such as the classification 

accuracy, true positive rate, false positive rate, F-measure and 

precision. They are calculated in the following way:  

 

True Positive Rate (TPR) =  

 

False Positive Rate (FPR) =  

 

Precision (Pr) =  

 

Accuracy (Ac) =  

 

F-measure ( ) =  

 

The CCELM classifier was tested for different efficiencies by 

varying the number of hidden neurons and this has been 

illustrated in fig8. For the waveatom features, the best accuracy 

is obtained for 20 hidden neurons and for the curvelet features, 

the best accuracy is obtained for 40 hidden neurons. By 

increasing the number of hidden neurons, the efficiency drops 

down.  
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Fig 8. Classification efficiency Vs number of hidden 

neurons for both curvelet and waveatom features using 

CCELM classifier 

 

 

It was found that the CCELM was the best classifier and it 

showed improved performance with the waveatom features. 

This result can be validated with the higher values of testing 

classification accuracy of 93. 5% for the waveatom features 

compared to 88. 2% with the curvelet features with the CC-

ELM classifier. The CC-ELM provides a better classification 

accuracy than the ELM which provided a result of 90. 76% 
with the waveatom features. The results are tabulated in the 

tables below.  

 

Table 1. Results for curvelet features with various 

classifiers 

 

CURVELET 

     ACCURACY 
CLASSIFIE

R 
TP 

RATE 
FP 

RATE 
F 

MEASURE 
PRECISIO

N 
TRAININ

G 
TESTIN

G 
Naïve 
Bayes 

0. 859 0. 141 0. 858 0. 861 0. 951 0. 915 

ELM 0. 935 0. 076 0. 927 0. 925 0. 989 0. 929 

CC-ELM 0. 774 0. 012 0. 931 0. 985 0. 995 0. 882 
 

Table 2. Results for waveatom features with various 

classifiers 

 

WAVEATOM 

     ACCURACY 

CLASSIFIE
R 

TP 
RATE 

FP 
RATE 

F 
MEASUR

E 

PRECISI
ON 

TRAINI
NG 

TESTI
NG 

Naïve 
Bayes 

0. 886 0. 114 0. 886 0. 887 0. 971 0. 959 

ELM 0. 946 0. 13 0. 893 0. 879 0. 9731 0. 
9076 

CC-ELM 0. 946 0. 056 0. 94 0. 946 0. 978 0. 935 

 

 

CONCLUSION:  

In this paper, a novel approach has been proposed for using the 

waveatom transform for applications in medical images in 

classifying the mammogram classifications as benign or 

malignant. This has been done by means of using the 

mammograms obtained from the DDSM database and 

classifying the microcalcifications using classifiers such as 

Extreme Learning Machine and the Circular Complex Extreme 

Learning Machine giving classification accuracy of 90. 76 and 

93. 5 respectively. This approach has given us a better result 

compared to that of the curvelet transform that gives us an 

accuracy rate of 92. 9 and 88. 2 for the aforementioned 
classifiers respectively. It can also been inferred that the 

CCELM classifier gives a constant higher accuracy rate for 

both the features, i. e. curvelet and waveatom features thus 

proving to be as one of the best classifiers. This work can be 

further extended by applying the waveatom transform for other 

types of cancer detection.  
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