International Journal of Pure and Applied Mathematics Volume 106 No. 2 2016, 533-541 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v106i2.16



# IDEALS IN P(r, m) $\Gamma$ -SEMINEAR-RINGS

R. Perumal<sup>1 §</sup>, P. Chinnaraj<sup>2</sup> <sup>1</sup>Department of Mathematics SRM University Kattankulathur, 603203, Tamilnadu, INDIA <sup>2</sup>Department of Mathematics PSG Institute of Technology and Applied Research Coimbatore, 641603, Tamilnadu, INDIA

**Abstract:** In this paper, we discuss in detail the behaviour of ideals of a P(r,m)  $\Gamma$  -seminear-ring. We have shown that in a P(1,2)(P(2,1))  $\Gamma$  -seminear-ring, every left ideal (right ideal) of R is also an ideal. We also obtain the notions of prime ideal, completely prime ideal and primary ideal coincide in a P(r,m)  $\Gamma$  -seminear-ring which admits mate functions.

AMS Subject Classification: 16Y60

Key Words: left (right) ideal, prime ideal, completely prime ideal, primary ideal, P(r,m)  $\Gamma$  - seminear-ring

### 1. Introduction

The concept of seminear-rings was introduced by B. V. Rootselaar in 1962 [14]. It is known that seminear-rings are common generalization of nearrings and semirings. Right seminear-rings are algebraic systems (R, +, .) with two binary associative operations, a zero 0 with x + 0 = 0 + x = x and x0 = 0x = 0 for any  $x \in R$  and one distributive law (x + y)z = xz + yz for all  $x, y, z \in R$ . If we replace the above distributive law by x(y + z) = xy + xz, then R is called a left seminear-ring. Throughout this paper R stands for a right seminear-

Received: September 9, 2015 Published: February 15, 2016 © 2016 Academic Publications, Ltd. url: www.acadpubl.eu

<sup>§</sup>Correspondence author

ring (R, +, .). The notion of  $\Gamma$  - seminear-rings were first introduced by Sajee pianskool [11] as a generalization of  $\Gamma$  - near-rings and  $\Gamma$  - semirings and then  $\Gamma$ - rings. In this paper we first define  $P(r, m) \Gamma$  - seminear-rings and we discuss in detail the behaviour of ideals of a  $P(r, m) \Gamma$  - seminear-ring.

### 2. Preliminaries

In this section we list some basic definitions and results from the theory of  $\Gamma$  -seminear-rings that are used in the development of the paper.

**Definition 1.** [11] Let R be an additive semigroup and  $\Gamma$  a nonempty set. Then R is called a right  $\Gamma$  - seminear-ring if there exists a mapping  $R \times \Gamma \times R \rightarrow R$  satisfying the following conditions:

- (i)  $(a+b)\gamma c = a\gamma c + b\gamma c$
- (ii)  $(a\gamma b)\beta c = a\gamma(b\beta c)$  for all  $a, b, c \in R$  and  $\gamma, \beta \in \Gamma$

**Definition 2.** [11] Let R be a  $\Gamma$  - seminear-ring under the mapping  $f: R \times \Gamma \times R \to R$ . a subsemigroup A of R is called a sub  $\Gamma$  - seminear-ring of R if A is a  $\Gamma$  - seminear-ring under the restriction of f to  $A \times \Gamma \times A$ .

**Definition 3.** [11] A non-empty subset I of a  $\Gamma$  - seminear-ring R is called a left (right) ideal if

- (i) for all  $x, y \in I$ ,  $x + y \in I$  and
- (ii) for all  $x \in I$ ,  $r \in R$  and  $\gamma \in \Gamma$ ,  $r\gamma x(x\gamma r) \in I$ , I is said to be an ideal of R it is both a left and a right ideal.

**Definition 4.** [1] An ideal I of  $\Gamma$  - seminear-ring R is called

- (i) a Prime ideal if  $A\Gamma B \subseteq I \Rightarrow A \subseteq I$  or  $B \subseteq I$  holds for all ideals A, B of R.
- (ii) a completely prime ideal if for  $a, b \in R, \gamma \in \Gamma, a\gamma b \in I \Rightarrow a \in I$  or  $b \in I$ .
- (iii) a completely semiprime ideal if for  $x \in R$ ,  $x^2 \in I$  implies  $x \in I$ .
- (iv) a primary ideal if  $a\gamma b\beta c \in I$  and if the product of any two of a, b, c not in  $I, \gamma, \beta \in \Gamma$ , then the  $k^{th}$  power of the third element is in I.

(v) a semiprime ideal if  $I^2 \subseteq P \Rightarrow I \subseteq P$  for all ideals I of R.

**Definition 5.** [11]  $A \Gamma$  - seminear-ring R is called

(i) a prime  $\Gamma$  - seminear-ring if  $\{0\}$  is a  $\Gamma$  - prime ideal.

(ii) a semiprime  $\Gamma$  - seminear-ring if  $\{0\}$  is a  $\Gamma$  - semiprime ideal.

**Definition 6.** [1] A  $\Gamma$  - seminear-ring R is called left (right) normal if  $a \in R\gamma a(a\gamma R)$  for each  $a \in R, \gamma \in \Gamma$ . R is normal if it is both left and right normal.

**Definition 7.** [13] A map f from R into R is called a mate function for R if  $x = x\gamma f(x)\gamma x$  for all x in R,  $\gamma \in \Gamma$  (f(x) is called a mate of x).

**Definition 8.**  $A \Gamma$  - seminear-ring R is called an integral  $\Gamma$  - seminear-ring if R has no non-zero divisors. Obviously every  $\Gamma$  - seminear-field is an integral  $\Gamma$  - seminear-ring.

**Definition 9.** For  $A \subseteq R$ , we define the radical  $\sqrt{A}$  of A to be  $\{a \in R/a^k \in A \text{ for some positive integer } k\}$ . Obviously  $A \subseteq \sqrt{A}$ .

**Definition 10.** [5] A left ideal A of R is called essential if  $A \cap B = \{0\}$ , where B is any left ideal of R, implies  $B = \{0\}$ .

**Definition 11.** An ideal I of R is called a strictly prime ideal if for left ideals A, B of  $R, A\Gamma B \subseteq I$  implies  $A \subseteq I$  or  $B \subseteq I$ .

## 3. P(r,m) $\Gamma$ - Seminear-Rings

In this section we give the precise definition of a P(r,m)  $\Gamma$  - seminear-ring and illustrate this concept with suitable examples.

**Definition 12.** Let r, m be two positive integers. We say that R is a P(r,m)  $\Gamma$  - seminearring if  $x^r \gamma R = R \gamma x^m$  for all x in R and  $\gamma \in \Gamma$ .

**Example 13.** (a) Let  $R = \{0, a, b, c, d\}$ . We define the semigroup operations + and  $\gamma$  in R as follows.

| + | 0 | a | b | с | d | $\gamma$ | 0 | a | b | с | d |
|---|---|---|---|---|---|----------|---|---|---|---|---|
| 0 | 0 | a | b | С | d | 0        | 0 | 0 | 0 | 0 | 0 |
| a | а | a | a | a | a | a        | 0 | a | a | a | a |
| b | b | a | b | b | b | b        | 0 | a | b | b | b |
| с | с | a | b | с | с | с        | 0 | a | b | с | с |
| d | d | a | b | с | d | d        | 0 | a | b | с | d |

Then  $(R, +, \Gamma)$  is a P(r, m)  $\Gamma$  - seminear-ring for all positive integers r and  $m, \gamma \in \Gamma$ .

- (b) The direct product of any two  $\Gamma$  seminear fields is a  $P(r, m) \Gamma$  seminearring for all positive integers r and m.
- (c) The Boolean P(1,1)  $\Gamma$  seminear-ring is a P(r,m)  $\Gamma$  seminear-ring for all positive integers r and m.

**Proposition 14.** If R has a mate function f then R is a left (right) normal  $\Gamma$  - seminear-ring.

Proof. Since R has a mate function f for all  $x \in R$ ,  $\gamma \in \Gamma$ ,  $x = x\gamma f(x)\gamma x \in R\gamma x(x\gamma R)$ . Obviously then R is a left (right) normal  $\Gamma$  - seminear-ring.

**Proposition 15.** In a P(1,2)  $\Gamma$  - seminear-ring,  $E \subseteq C(R)$ 

Proof. Since  $0 \in E$ , it is non-empty. Let  $e \in E$ , As R is P(1,2),  $e\gamma R = R\gamma e^2 \Rightarrow e\gamma R = R\gamma e \Rightarrow e\gamma R\gamma e = e\gamma (R\gamma e) = e\gamma (e\gamma R) = e^2\gamma R = e\gamma R$ . Hence  $e\gamma R = e\gamma R\gamma e = R\gamma e$ . For  $x \in R$ ,  $\gamma \in \Gamma$  there exist  $u, v \in R$  such that  $x\gamma e = e\gamma u\gamma e$  and  $e\gamma x = e\gamma v\gamma e$ . These imply  $e\gamma x\gamma e = e\gamma (x\gamma e) = e\gamma (e\gamma u\gamma e) = e\gamma u\gamma e = x\gamma e$  and  $e\gamma x\gamma e = (e\gamma x)\gamma e = (e\gamma v\gamma e)\gamma e = e\gamma x$ . Thus  $e\gamma x = e\gamma x\gamma e = x\gamma e$  for all  $x \in R, \gamma \in \Gamma$ . Therefore  $E \subseteq C(R)$ .

**Proposition 16.** Let R be a P(1,2)  $\Gamma$  - seminear-ring. Then every left ideal of R is an ideal.

Proof. If A is a left ideal of R then  $R\Gamma A \subseteq A$ . Let  $a \in A$  and  $y \in R$ . We have  $a\gamma y \in a\gamma R = R\gamma a^2 \Rightarrow a\gamma y = y'\gamma a^2 = (y'\gamma a)\gamma a$  (for some y' in  $R) \in R\gamma a$ . This forces  $a\gamma y \in R\Gamma A \subseteq A \Rightarrow A\Gamma R \subseteq A$ . Hence A is an ideal.

**Remark 17.** We observe that as in Proposition 16, every right ideal of R

is also an ideal in a P(2,1)  $\Gamma$  - seminear-ring.

**Theorem 18.** Let R admit a mate function f. Then R is a P(r,m)  $\Gamma$  -seminear-ring for all positive integers r and m if and only if R is a P(1,2)  $\Gamma$  -seminear-ring.

Proof. If part: Since R is a P(1,2)  $\Gamma$  - seminear-ring  $\Rightarrow E \subseteq C(R)$  (By proposition 15) Let r, m be any two positive integers. Let  $a \in x^r \gamma R$ . Therefore  $a = x^r \gamma y$  for some y in R. Now  $a = (x\gamma f(x)\gamma x)^r \gamma y = x^r \gamma (f(x)\gamma x)^r \gamma y$  (since  $f(x)\gamma x \in E \subseteq C(R)) = x^r \gamma (f(x)\gamma x)\gamma y = x^r \gamma y\gamma f(x)\gamma x$  (since  $E \subseteq C(R)) =$  $x^r \gamma y\gamma (f(x)\gamma x)^m$  (since  $f(x)\gamma x \in E) = x^r \gamma y\gamma (f(x))^m x^m$  (since  $E \subseteq C(R)) =$  $(x^r \gamma y\gamma (f(x))^m)\gamma x^m \in R\gamma x^m$ . Therefore  $x^r \gamma R \subseteq R\gamma x^m$ . In a similar fashion we get  $R\gamma x^m \subseteq x^r \gamma R$ . Hence  $x^r \gamma R = R\gamma x^m$  and R is a P(r,m)  $\Gamma$  - seminear-ring. The converse is obvious - it follows by taking r = 1 and m = 2.

**Theorem 19.** Let R be a P(r, m)  $\Gamma$  - seminear-ring with a mate function f and let A and B be any two left ideals of R. Then we have the following:

- (i)  $\sqrt{A} = A$ ,
- (ii)  $A \cap B = A \Gamma B$ ,
- (iii)  $A^2 = A$ ,
- (iv) If  $A \subseteq B$  then  $A\Gamma B = A$ ,
- (v)  $A \cap R\Gamma B = A\Gamma B$ ,
- (vi) A is a P(r, m) Sub- $\Gamma$  seminear-ring.

**Proof.** We first observe that in view of Theorem 18 we need only to consider the special case when r = 1 and m = 2. Thus we take R to be a P(1,2)  $\Gamma$ seminear-ring with a mate function. (i.e) R is a right normal (By Proposition 14).

(i) Let  $x \in \sqrt{A}$ . Then there exists some positive integer k such that  $x^k \in A$ . Since R is an right normal  $\Gamma$  - seminear-ring  $x \in x\gamma R = R\gamma x^2 \Rightarrow x = y\gamma x^2$ for some  $y \in R \Rightarrow x = y\gamma x\gamma x = y\gamma (y\gamma x^2)\gamma x = y^2\gamma x^3 = \cdots = y^{k-1}\gamma x^k \in R\Gamma A \subseteq A$ . (i.e)  $x \in A, \gamma \in \Gamma$ . Therefore  $\sqrt{A} \subseteq A$ . But obviously  $A \subseteq \sqrt{A}$ and (i) follows. (ii) By proposition 16 both A and B are ideals and consequently

$$A\Gamma B \subseteq A \cap B. \tag{1}$$

To prove the reverse inclusion we note that for any  $x \in A \cap B$ ,  $x = x\gamma f(x)\gamma x = (x\gamma f(x))\gamma x \in (A\Gamma R)\Gamma B \subseteq A\Gamma B \Rightarrow x \in A\Gamma B$ . Therfore

$$A\bigcap B\subseteq A\Gamma B.$$
 (2)

From (1) and (2) we get  $A \cap B = A \Gamma B$ .

- (iii) Taking B = A in (ii) we get  $A\Gamma A = A \bigcap A \Rightarrow A^2 = A$ .
- (iv) If  $A \subseteq B \Rightarrow A \bigcap B = A$  and (ii) gives  $A = A \Gamma B$ .
- (v) We have  $A \cap R\Gamma B \subseteq A \cap B$  (since  $R\Gamma B \subseteq B$ ). Therefore

$$A \bigcap R\Gamma B \subseteq A\Gamma B \tag{3}$$

(using(ii)).

Also  $A\Gamma B = A \bigcap B = A$  and  $A\Gamma B \subseteq R\Gamma B$ . Therfore

$$A\Gamma B \subseteq A \bigcap R\Gamma B. \tag{4}$$

From (3) and (4) we get  $A\Gamma B = A \bigcap R\Gamma B$ .

(vi) Let  $a \in A$ . As  $a\gamma A \subseteq a\gamma R = R\gamma a^2$ , there exists  $y \in R$ , for every  $x \in A$ , such that  $a\gamma x = y\gamma a^2$ . Now  $a\gamma x = y\gamma a\gamma a = y\gamma (a\gamma f(a)\gamma a)\gamma a = (y\gamma a\gamma f(a))\gamma a^2 = a\gamma a^2$ . where  $a = y\gamma a\gamma f(a) \in (R\Gamma A)\Gamma R \subseteq A$ . Therfore

$$a\gamma A \subseteq A\gamma a^2. \tag{5}$$

Conversely if  $z \in A$  then  $z\gamma a^2 \in A\gamma a^2 \subseteq R\gamma a^2 = a\gamma R \Rightarrow$  there exists  $w \in R$  such that  $z\gamma a^2 = a\gamma w = a\gamma f(a)\gamma a\gamma w = a\gamma (f(a)\gamma a\gamma w) = a\gamma z$ where  $z = f(a)\gamma a\gamma w \in R\Gamma A\Gamma R \subseteq A$ . Therefore

$$A\gamma a^2 = a\gamma A.$$
 (6)

From (5) and (6) we get

$$a\gamma A = A\gamma a^2 \tag{7}$$

for all  $a \in A, \gamma \in \Gamma$ . From (6) and (7), A is a P(r, m) Sub  $\Gamma$  - seminearring.

**Theorem 20.** If R is a P(r,m)  $\Gamma$  - seminearring with a mate function f then R has the following properties

- (i) R is a semiprime  $\Gamma$  seminear-ring
- (ii)  $R\gamma x\gamma R\gamma y = R\gamma x \bigcap R\gamma y = R\gamma x\gamma y$  for all  $x, y \in R, \gamma \in \Gamma$ .

*Proof.* In view of the Theorem 18 we can take R as a P(1,2)  $\Gamma$  - seminearring with a mate function f.

- (i) Let A be a left ideal of R. Then it is clear from Proposition 16, A is an ideal of R. Let I be any ideal of R such that  $I^2 \subseteq A$ . If  $x \in I$  then  $x = x\gamma f(x)\gamma x \in I\Gamma(R\Gamma I) \subseteq I^2 \subseteq A \Rightarrow x \in A$ . Thus  $I \subseteq A$ . Therefore A is a  $\Gamma$ -semiprime ideal. In particular  $\{0\}$  is a  $\Gamma$ -semiprime ideal and therefore R is a semiprime  $\Gamma$  seminear-ring.
- (ii) As  $R\gamma x$  and  $R\gamma y$  are left ideals of R, it follows from the Theorem 19(ii) that  $R\gamma x \bigcap R\gamma y = (R\gamma x)\gamma(R\gamma y)$ . Also  $R\gamma x = R\gamma x \bigcap R = R\gamma x\gamma R$ . Hence  $R\gamma x\gamma y = R\gamma x\gamma R\gamma y = R\gamma x \bigcap R\gamma y$  and (ii) follows.

**Theorem 21.** Let R be a P(r,m)  $\Gamma$  - seminear-ring with a mate function f and let P be a ideal of R. Then the following are equivalent

- (i) P is a prime ideal
- (ii) P is a completely prime ideal
- (iii) P is a primary ideal

Proof. (i)  $\Rightarrow$  (ii). Let  $a\gamma b \in P$ . By Theorem 20(ii),  $R\gamma a\gamma R\gamma b = R\gamma a\gamma b \subseteq R\Gamma P \subseteq P$ . Since  $R\gamma a$  and  $R\gamma b$  are ideals in R (by Proposition 16) and also P is prime,  $R\gamma a\gamma R\gamma b \subseteq P \Rightarrow R\gamma a \subseteq P$  or  $R\gamma b \subseteq P$ .

Suppose  $R\gamma a \subseteq P$ . Then  $a = (a\gamma f(a))\gamma a \in P$  and  $R\gamma b \subseteq P \Rightarrow b = (b\gamma f(b))\gamma b \in P$ . Hence P is a completely prime ideal.

Proof of  $(ii) \Rightarrow (i)$  obvious.

 $(ii) \Rightarrow (iii)$ : Theorem 20(ii) gurantees that for all  $\gamma \in \Gamma$ ,  $x, y \in R$ ,  $R\gamma x\gamma y = R\gamma x \bigcap R\gamma y$ . As  $R\gamma x \bigcap R\gamma y = R\gamma y \bigcap R\gamma x$ , we see that  $R\gamma x\gamma y = R\gamma y\gamma x$  for all  $x, y \in R$ . In a smilar fashion it follows that for all  $a, b, c \in R$ 

$$R\gamma a\gamma b\gamma c = R\gamma b\gamma c\gamma a = R\gamma c\gamma a\gamma b = R\gamma a\gamma c\gamma b = R\gamma b\gamma a\gamma c = R\gamma c\gamma b\gamma a.$$

Suppose  $a\gamma b\gamma c \in P$  and  $a\gamma b \notin P$ . Since R is a P(r,m)  $\Gamma$  - seminear-ring with a mate function, it is a normal  $\Gamma$  - seminear-ring. Therefore  $a\gamma b\gamma c \in$  $R\gamma a\gamma b\gamma c \subseteq R\Gamma P \subseteq P$  and therefore  $(a\gamma b)\gamma c \in P \Rightarrow c \in P$  (as P is a completely prime ideal and since  $a\gamma b \notin P$ ). Again suppose  $a\gamma b\gamma c \in P$  and  $a\gamma c \notin P$ . To get the desired result we proceed as follows. Consider  $a\gamma c\gamma b \in R\gamma a\gamma c\gamma b =$  $R\gamma a\gamma b\gamma c \subseteq R\Gamma P \subseteq P$ . Thus  $a\gamma c\gamma b = (a\gamma c)\gamma b \in P$ . If  $a\gamma c \notin P$  then  $b \in P$ as before. Continuing in the same way, it follows that if  $a\gamma b\gamma c \in P$  and if the product of any two of a, b, c does not fall in P then the third falls in P. Hence P is a primary ideal.

 $(iii) \Rightarrow (ii)$ : Let  $a\gamma b \in P$  and  $a \notin P$ . First we observe that  $f(a)\gamma a \notin P$ . For, if  $f(a)\gamma a \in P \Rightarrow a = a\gamma(f(a)\gamma a) \in R\Gamma P \subseteq P$  which is a contradiction. Also  $f(a)\gamma a\gamma b \in R\Gamma P \subseteq P$ . Thus  $f(a)\gamma a\gamma b \in P$  and  $f(a)\gamma a \notin P$ . As P is a primary ideal of  $R, b^k \in P \Rightarrow b$  for some positive integer k. Now  $b^k \in P \Rightarrow b \in \sqrt{P}$  and  $\sqrt{P} = P$  by Theorem 19 (i). Thus  $b \in P$  and (ii) follows.

**Theorem 22.** Let R be a P(r,m)  $\Gamma$  - seminear-ring with mate functions. If R is prime then R has no non-zero divisors.

Proof. Let  $x, y \in R$  such that  $x\gamma y = 0$ . Clearly  $R\gamma x$  and  $R\gamma y$  are ideals of R and by Theorem 20(ii)  $R\gamma x\gamma R\gamma y = R\gamma x\gamma y = R\gamma 0 = \{0\}$ . Since R is prime we have either  $R\gamma x = \{0\}$  or  $R\gamma y = \{0\}$ . If f is a mate function for R then we have  $x = x\gamma f(x)\gamma x \in R\gamma x$  and  $y = y\gamma f(y)\gamma y \in R\gamma y$ . Therefore x = 0 or y = 0. Hence R has no non-zero divisors.

**Proposition 23.** Let R be a P(r,m)  $\Gamma$  - seminear-ring admitting mate functions. If R has no non-zero divisors, then every ideal of R is essential.

Proof. Let  $A \neq 0$  be an ideal of R. Suppose there exists an ideal B of R such that  $A \cap B = \{0\}$ . Theorem 19(ii) demands that  $A \Gamma B = \{0\}$ . Since R has no non-zero divisors, we get  $B = \{0\}$  and the result follows.

#### References

 Ahsan. J., Seminear-rings characterized by their S-ideals. I, proc. japan. acad., 71A (1995), 101-103.

- [2] Ahsan. J., Seminear-rings characterized by their S-ideals. II, proc.japan.acad., 71A (1995), 111-113.
- [3] Balakrishnan R. and Perumal R., Left Duo Seminear-rings, Scientia Magna., 8(3) (2012), 115-120.
- [4] Balakrishnan. R and Suryanarayanan. S., P(r,m) Near-rings, Bull. Malaysian Math. Soc. (Second Series)., 23 (2000), 117-130.
- [5] Oswald.A., Near-rings in which every N-subgroup is principal, Proc. London Math. Soc., (3)28 (1974), 67-88.
- [6] Perumal R., Balakrishnan R. and Uma S., Some Special Seminear-ring Structures, Ultra Scientist of Physical Sciences., 23(2) (2011),427 - 436.
- [7] Perumal R., Balakrishnan R. and Uma S., Some Special Seminear-ring Structures II, Ultra Scientist of Physical Sciences., 24(1) (2012),91 - 98.
- [8] Perumal R. and Balakrishnan R., Left Bipotent Seminear-rings, International Journal of Algebra., 6(26) (2012),1289 -1295.
- [9] Perumal R. and Chinnaraj P., Medial Left Bipotent Seminear-rings., Springer Proceedings in Mathematics and Statistics., 139 (2015), 451-457.
- [10] Pilz Günter., Near Rings, North-Holland, Amsterdam, second edition, (1983).
- [11] Sajee Pianskool., Simple  $\Gamma$ -Seminearrings, Journal of Mathematics research., (1)2 (2009), 124-129.
- [12] Shabir. M. and Ahamed. I., Weakly regular seminearrings, International Electronic Journal of Algebra., 2 (2007), 114-126.
- [13] Suryanarayanan. S and Ganesan. N., Stable and Pseudostable near-rings, Indian J. Pure and Appl. Math., 19 (December, 1988), 1206-1216.
- [14] Van Hoorn. W.G. and Van Rootselaar. B., Fundamental notions in the theory of seminearrings., compositio mathematic., 18 (1967), 65-78.
- [15] Weinert. H.J., Seminear-rings, seminearfield and their semigroup theoretical background, Semigroup Forum., 24(1982), 231- 254.