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______________________________________________________________________ 

Abstract: This paper gives the cost analysis of  a finite capacity single server bulk queueing model with 
closedown times. The server serves the customers in batches of  maximum size ‘b’ with a minimum 
threshold value ‘a’. Customers arrive according to a Markovian Arrival Process (MAP). On completion of  
a service, if  the queue length is less than ‘a’, then the server performs a closedown work and then leaves 
for a vacation of  random length. When the server returns from vacation and if  the queue length is still less 
than ‘a’ he avails another vacation and so on until the server finds ‘a’ customers waiting in the queue.  
After the completion of  a service, if  the number of  customers in the queue is greater than a specified value 
‘a’ then the server will continue the batch service with general bulk service rule. On the other hand, if  the 
server finds at least ‘a’ customers during closedown period, he immediately starts serving the batch of  ‘a’ 
customers. Using supplementary variable and imbedded Markov chain technique, queue length 
distribution at arbitrary epoch is obtained. Some key performance measures are also obtained. Cost model 
is discussed with Numerical illustration. 

Keywords: Closedown times, cost analysis, MAP, multiple vacation. 
______________________________________________________________________ 

1. Introduction 

n recent years, increasing attention has been devoted to analyse the queueing systems 
with vacations using tractable point process called MAP as input. In general, MAP is a 

non renewal input process which includes the Markov modulated Poisson process (MMPP), 
the PH renewal process and the super positions of  such process as particular cases. It was 
first introduced by Lucantoni et al. [17]. MAPs are used in traffic engineering to match 
correlated and/or bursty arrival processes commonly arising in computer and 
communication applications. For more details on these point process and their importance 
in stochastic modelling, one can refer to Neuts [20]. 

I 

Vacation queue is an efficient and easy way to analyse the queues in cases where a 
single channel is serving more than one queue and are useful for the systems in which the 
server wants to utilise the idle time for different purposes. Application of  server vacation 
models can be found in manufacturing systems, designing of  local area networks and data 
communication systems. For more details one can refer to the comprehensive survey by 
Doshi [6]. Blondia [4] analysed MAP/G/1/N queue with multiple vacations for two types 
of  service disciplines namely exhaustive service discipline and limited service discipline. 
Using embedded Markov chain and semigenerative techniques, Tadj et al. [27] analysed an 
optimal control of  batch arrival, bulk service queueing system with N- policy with Bernoulli 
vacation schedule. Sikdar and Gupta [24], consider a finite-buffer batch arrival and batch 
service queue with single and multiple vacations. 
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 Horvath and Telek [11], analysed canonical representation of  phase type distributions 
using transformation method. Using matrix technique and method of  catastrophes, Kim et 
al. [15] analysed the traffic control in telecommunications by considering generation of  
flows as MAP and service time follows phase type distribution. Telek and Horvath [28], 
investigate the problem of  minimal representation of  MAP(n) along with the discussion 
about characterization of  phase type (PH) distributions. Blondia [3], analysed the single 
server queue with finite capacity where the arrival process is Neuts’ versatile Markovian 
point process (the N-process). 

 Gupta and Sikdar [8], analysed a single server finite-buffer bulk-service queue in 
which the inter-arrival and service times are exponentially and arbitrarily distributed. 
Samanta et al. [22] analysed a discrete-time single-server finite-buffer batch arrival queue in 
which customers are served in batches according to a general bulk-service rule. Sikdar and 
Gupta [9, 23], analysed finite buffer batch service queueing system wherein the input 
process is MAP and for computational procedure service and vacation times follows phase 
type distribution.  

 In real time situations, most of  the queueing situations occurring in communication 
networks and manufacturing systems are more complicated and need closedown time for 
further investigation. For example, in a pump manufacturing industry, in order to do other 
works such as making the templates for copy turning, checking the components etc., the 
operator always shuts down the machine and removes the templates before taking up other 
works. This motivates to consider closedown times. 

The research on queueing systems with closedown time has been attempted by very 
few researchers. Arumuganathan and Jeyakumar [1-2] analysed some bulk queues with 
multiple vacations and closedown times. Jeyakumar and Arumganathan [12] investigated 
the non Markovian bulk queueing system with multiple vacations and controlled optional 
re-service with cost model. For more details on these bulk queues, reference can be made to 
Chaudhry and Templeton [5]. Ke [13] analysed, M/G/1 system under NT policies with 
breakdowns, startup and closedown times. One can find the more general study of  
MAP/G/1/N queue with single and multiple vacations along with closedown time in Niu 
and Takahashi [21]. But cost analysis of  the model is not considered for finite queues with 
bulk service. Sikdar [25] analysed, MAP/G(a, b)/1/N queue with multiple vacations, but 
without closedown time. A combination of  MAP/G(a, b)/1/N queue with closedown time 
is worth investigating as it exists in many practical situations.  

In this paper we consider finite queues with batch service, multiple vacations and 
closedown times in which the arriving customers are served by a single server in batches of  
maximum size ‘b’ with the minimum threshold value ‘a’. On completion of  a service, if  the 
queue length is less than ‘a’, then the server performs a closedown work and then leaves for 
a vacation of  random length. When the server returns from vacation and if  the queue 
length is still less than ‘a’ he avails another vacation and so on until the server finds ‘a’ 
customers waiting in the queue. Furthermore, if  the server finds ‘a’ customers during 
closedown period, he immediately starts serving the batch of  ‘a’ customers. After the 
completion of  a service, if  the number of  customers in the queue is greater than a specified 
value ‘a’ then the server will continue the batch service with general bulk service rule. The 
main motivation of  this work comes from a real life situation of  SVC based IP-over ATM 
networks which is based on the work of  Jau-Chuan Ke [14]. In the IP over ATM networks, 
we can see a more complicated queueing situation where the close-down times are further 
needed. The close-down time here corresponds to an inactivity timer in the switched virtual 
channel connections (SVC) environment (see Hassan and Atiquzzaman [10]). 
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SVC is the abbreviation of  switched virtual connection. The arrival of  packets in SVC 
based IP-over ATM networks are correlated. The arriving packets are served by a single 
server namely SVC manager or IP controller with the general bulk service rule. After 
completion of  service, system is having less than ‘a’ packets, server performs a closedown 
work such as starting an inactive timer of  the SVC (e.g. routing information and bandwidth) 
which is reserved to anticipate more packets from the same IP flow.  Furthermore, if  ‘a’ 
packets arrive during closedown period, the server immediately serves minimum of  ‘a’ 
packets in the system. But if  less than ‘a’ packets are in the system after closedown time 
period, the server is doing another work (vacation) such as releasing the SVC by signalling 
protocols etc., when the server returns from vacation and the number of  packets is still less 
than ‘a’ he avails another vacation and so on until the server finds ‘a’ packets waiting in the 
queue. This situation is modelled as MAP/G(a, b)/1/N queue with multiple vacations and 
closedown times. 

The structure of  the paper is organised as follows: Section 2 gives the description of  
the model and the notations used to describe the model parameters. In Section 3, using 
supplementary variable technique and embedded Markov chain technique, queue length 
distribution at various epochs such as service completion, closedown completion and 
vacation termination epochs is presented. In Section 4, relation between queue length 
distribution at arbitrary and various epochs are discussed. Some of  the performance 
measures are obtained in Section 5. In Section 6, cost analysis of  the model is obtained. 
Computational aspects, numerical illustration and conclusion are presented in Sections 7 and 8 
respectively. 

2. Mathematical Model 

In this section, model description and the notations used to describe the model 
parameters are discussed. 

2.1. Model Description 

In this paper, a finite capacity single server bulk queueing system with multiple 
vacations and closedown time is considered. Arrival of  customers is considered as a 
tractable Markovian arrival process. The service is done according to general bulk service 
rule. On completion of  a service, if  the queue length is less than ‘a’, then the server 
performs a closedown work and then leaves for a vacation of  random length. When the 
server returns from vacation and if  the queue length is still less than ‘a’ he avails another 
vacation and so on until the server finds ‘a’ customers waiting in the queue. If  the number 
of  customers in the queue is greater than a specified value ‘a’ then the server will continue 
the batch service with general bulk service rule. On the other hand, if  the server finds at 
least ‘a’ customers during closedown period, he immediately starts serving the batch of  ‘a’ 
customers. The graph showing the sample path of  the proposed queueing model is depicted 
in Figure 1. 

 
Figure 1. Schematic diagram. 
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2.2. Notations 

The following notations are used for further development. 

*( )[ ( )]{ ( )}S x s x S  DF[PDF]{LST} of  the service time S of  the typical Batch. 

*( )[ ( )]{ ( )}V x v x V  DF[PDF]{LST} of  a typical vacation time V of  the server. 

*( )[ ( )]{ ( )}U x u x U DF[PDF]{LST} of  a close down time of  a server. 

  [ ]{ }s u v

1

 Mean service [close down] {vacation} time of  a server. 

 

( )qN t

( )J t
ˆ( )S t
ˆ ( )V t
ˆ ( )U t



 



0, if the server is on vacation at time .

( ) 1, if the server is busy at time .

2, if the server is doing closedown job at time .

t

t t

t

   * /s b

 Probability that the server is busy. 

 Number of  customers present in the queue not counting those are in 
service at time t. 

 State of  the underlying Markov Chain of  the MAP at time t. 

 Remaining service time of  the batch in service at time t. 

 Remaining vacation time of  the server at time t. 

 Remaining closedown time of  the server at time t. 

The state of  the system at time ‘t’ is described by the following random variables 
namely, 

 

The service, closedown, vacation times are assumed to be i.i.d random variables and 
each is independent of  the arrival process. The traffic intensity is given by . It 
may be noted that in case of  finite buffer queues   and  1

C

 are different. Also it is 
different in the case of  infinite buffer queue with GBS (a, b) rule. 

2.3. Markovian Arrival Process 

The Markovian arrival process was introduced by Neuts and Lucantoni [19] as the 
versatile Markovian Process and later redefined as the MAP by Lucantoni et al. [17].   
MAP is a generalization of  the Poisson process, where the arrivals are governed by an 
underlying m–state Markov Chain. With probability  , 1 ,i j m

i
ij , there is a transition 

from state  to state j  without an arrival, and with probability , there is a 
transition from state  to state 

D  , 1 ,ij i j m
i j  with an arrival. The matrix  has non-negative 

off-diagonal and negative diagonal elements.  
 [ ]ijC C

( )A t (0, ]t ( )J t
t  1 ).i i m

{ ( ), ( )}A t J t   {( , ) : 0, 1 }n i n i m

Let  denote the number of  customers arriving in  and  be the state of  
the underlying Markov Chain at time  with state space ( :  Then  

 is a two–dimensional Markov process with state space . 
The infinitesimal generator of  the above Markov process is given by  

   
    
   
 

     
    
 
    

     

Q

C D 0 0

0 C D 0

0 0 C D
. 
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( )}t{ ( ),A t J  is called the Markovian arrival process (MAP). Since Q is the 
infinitesimal generator of  the MAP, we have  ( ) 0C D e . Where e is an  vector 
with all its elements equal to 1. Since 

1m
( )C D

( )}J t
 is the infinitesimal generator of  the 

underlying Markov Chain , there exists a stationary probability vector {  such that 
,    0C D  1e . 

The fundamental arrival rate of  the above Markov process is given by . *  De

2.4. Joint Probability Densities of  the Model 

The joint probability densities of  queue length , state of  the server  ( )t
ˆ ( )}V t

( )qN t  and the 
remaining service [closedown] {vacation} times are S t respectively, for  

 is defined by 

ˆ)[ ( )]{U t

 

ˆ(
 1 i m

     ˆ: ) { ( ) , ( ) , , ( )i qt x p N t n J t i x x t

   ) { ( ) , ( ) , ( )t x p N t n J t t

 

 ( )S t x

   ˆ ( )U t x x

   1}, 0 , 0,n N x

   2}, 0 , 0,n N x

(  ,n x

( , :n x  ,i xi q  

  { ( )i qN t  ,i x  ˆ ( )V t x x , ( ) , ( )x p n J t t

t

   0}, 0 , 0.n N x  ( ,n x : )t

In steady state, that is when  the above probabilities will be denoted by  

 


   lim ( , : ) ( , ), 0, 0 ,i i
t

n x t n x x n N  

 


  0, 0x  ,n N  lim ( , : ) ( , ),i i
t

n x t n x

 


  0, 0x  ,n N  lim ( , : ) ( , ),i i
t

n x t n x

where  ( , )n xi  gives the density function with ‘n’ number of  customers in the queue , 
phase of  the arrival process is in state ‘ ‘ and remaining service time of  the server is ‘x’. 
Similarly other two terms can be interpreted. 

i

Further, let us define the row vectors of  the order 1 m  by 

  1 2( , ) [ ( , ), ( , ), ..., ( , )],mn x n x n x n x   

  ( , ) [ ( , ), ( , ), ..., ( , )],n x n x n x n x  1 2 m

   1 2( , ) [ ( , ), ( , ), ..., ( , )].mn x n x n x n x  

3. Queue Length Distribution at Various Epochs 

This section gives the queue length distributions at arbitrary and various epochs such 
as service completion, closedown completion and vacation termination epochs.   

3.1. Queue Length Distribution at Service Completion, Closedown Completion and Vacation 
Termination Epochs 

It is assumed that either the service completion or closedown completion or vacation 
termination occurs at the time epochs . Also the state of  the system at i  is 
defined as 

0 1 2, , ..........t t t t
{ ( ), ( ),q i iN t t ( )}iJ t

 
where, ( ), ( )q i iN t t ( )iJ t and 

 
are as defined in Section 2. 

Therefore,  

 ( )i


 



0, if the embedded point is vacation termination ins

1, if the embedded point is service completion instan

2, if the embedded point is closedown completion in

tant at time ,

t at time ,

stant at time .
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2.2. Notations 

The following notations are used for further development. 

*( )[ ( )]{ ( )}S x s x S  DF[PDF]{LST} of  the service time S of  the typical Batch. 

*( )[ ( )]{ ( )}V x v x V  DF[PDF]{LST} of  a typical vacation time V of  the server. 

*( )[ ( )]{ ( )}U x u x U DF[PDF]{LST} of  a close down time of  a server. 

  [ ]{ }s u v

1

 Mean service [close down] {vacation} time of  a server. 

 

( )qN t

( )J t
ˆ( )S t
ˆ ( )V t
ˆ ( )U t



 



0, if the server is on vacation at time .

( ) 1, if the server is busy at time .

2, if the server is doing closedown job at time .

t

t t

t

   * /s b

 Probability that the server is busy. 

 Number of  customers present in the queue not counting those are in 
service at time t. 

 State of  the underlying Markov Chain of  the MAP at time t. 

 Remaining service time of  the batch in service at time t. 

 Remaining vacation time of  the server at time t. 

 Remaining closedown time of  the server at time t. 

The state of  the system at time ‘t’ is described by the following random variables 
namely, 

 

The service, closedown, vacation times are assumed to be i.i.d random variables and 
each is independent of  the arrival process. The traffic intensity is given by . It 
may be noted that in case of  finite buffer queues   and  1

C

 are different. Also it is 
different in the case of  infinite buffer queue with GBS (a, b) rule. 

2.3. Markovian Arrival Process 

The Markovian arrival process was introduced by Neuts and Lucantoni [19] as the 
versatile Markovian Process and later redefined as the MAP by Lucantoni et al. [17].   
MAP is a generalization of  the Poisson process, where the arrivals are governed by an 
underlying m–state Markov Chain. With probability  , 1 ,i j m

i
ij , there is a transition 

from state  to state j  without an arrival, and with probability , there is a 
transition from state  to state 

D  , 1 ,ij i j m
i j  with an arrival. The matrix  has non-negative 

off-diagonal and negative diagonal elements.  
 [ ]ijC C

( )A t (0, ]t ( )J t
t  1 ).i i m

{ ( ), ( )}A t J t   {( , ) : 0, 1 }n i n i m

Let  denote the number of  customers arriving in  and  be the state of  
the underlying Markov Chain at time  with state space ( :  Then  

 is a two–dimensional Markov process with state space . 
The infinitesimal generator of  the above Markov process is given by  

   
    
   
 

     
    
 
    

     

Q

C D 0 0

0 C D 0

0 0 C D
. 
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( )}t{ ( ),A t J  is called the Markovian arrival process (MAP). Since Q is the 
infinitesimal generator of  the MAP, we have  ( ) 0C D e . Where e is an  vector 
with all its elements equal to 1. Since 

1m
( )C D

( )}J t
 is the infinitesimal generator of  the 

underlying Markov Chain , there exists a stationary probability vector {  such that 
,    0C D  1e . 

The fundamental arrival rate of  the above Markov process is given by . *  De

2.4. Joint Probability Densities of  the Model 

The joint probability densities of  queue length , state of  the server  ( )t
ˆ ( )}V t

( )qN t  and the 
remaining service [closedown] {vacation} times are S t respectively, for  

 is defined by 

ˆ)[ ( )]{U t

 

ˆ(
 1 i m

     ˆ: ) { ( ) , ( ) , , ( )i qt x p N t n J t i x x t

   ) { ( ) , ( ) , ( )t x p N t n J t t

 

 ( )S t x

   ˆ ( )U t x x

   1}, 0 , 0,n N x

   2}, 0 , 0,n N x

(  ,n x

( , :n x  ,i xi q  

  { ( )i qN t  ,i x  ˆ ( )V t x x , ( ) , ( )x p n J t t

t

   0}, 0 , 0.n N x  ( ,n x : )t

In steady state, that is when  the above probabilities will be denoted by  

 


   lim ( , : ) ( , ), 0, 0 ,i i
t

n x t n x x n N  

 


  0, 0x  ,n N  lim ( , : ) ( , ),i i
t

n x t n x

 


  0, 0x  ,n N  lim ( , : ) ( , ),i i
t

n x t n x

where  ( , )n xi  gives the density function with ‘n’ number of  customers in the queue , 
phase of  the arrival process is in state ‘ ‘ and remaining service time of  the server is ‘x’. 
Similarly other two terms can be interpreted. 

i

Further, let us define the row vectors of  the order 1 m  by 

  1 2( , ) [ ( , ), ( , ), ..., ( , )],mn x n x n x n x   

  ( , ) [ ( , ), ( , ), ..., ( , )],n x n x n x n x  1 2 m

   1 2( , ) [ ( , ), ( , ), ..., ( , )].mn x n x n x n x  

3. Queue Length Distribution at Various Epochs 

This section gives the queue length distributions at arbitrary and various epochs such 
as service completion, closedown completion and vacation termination epochs.   

3.1. Queue Length Distribution at Service Completion, Closedown Completion and Vacation 
Termination Epochs 

It is assumed that either the service completion or closedown completion or vacation 
termination occurs at the time epochs . Also the state of  the system at i  is 
defined as 

0 1 2, , ..........t t t t
{ ( ), ( ),q i iN t t ( )}iJ t

 
where, ( ), ( )q i iN t t ( )iJ t and 

 
are as defined in Section 2. 

Therefore,  

 ( )i


 



0, if the embedded point is vacation termination ins

1, if the embedded point is service completion instan

2, if the embedded point is closedown completion in

tant at time ,

t at time ,

stant at time .
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The limiting case of  these probabilities is 

  


    ( ) lim ( ( ) , ( ) , ( ) 1), 0 ,j q i i in
i

 p N t n J t j t n N

     ( ) lim ( ( ( ) 2), 0 ,j q in
i

 ) , ( ) ,i ip N t t n Nn J t j

 

 

 ( ) limn  ) , ( ) ,i i ) 0),i
i

 ( ( ( 0 .j qp N t t n N

     1 2( ), ( )........................ ( )],( ) [ mn n nn

n J t j  

The row vectors of  the matrix are given by 

      1 2( ), ( )........................ ( )],( ) [ mn n nn  

 

     1 2( ), ( )........................ ( )].( ) [ mn n nn  

Further, let ,  be the ( )( ( ))[ ( )]n n nA C V  0n m m  matrices whose th  
element represents the conditional probability that ‘n’ customers have been accepted during 
a service(closedown) [vacation] time of  a batch and the underlying Markov chain is in 
phase ‘

( , )i j

j ‘ at the end of  the service(closedown) [vacation] time given that the underlying 
Markov chain was in phase ‘ ‘ at the beginning of  the service(closedown) [vacation]. 
Further, let us denote  

i
A A V C C      ( ) ( ), ( ) V( ), ( ) ( ), 1 .N N N

k n
c c cn k n k n k n N

3( 1)

 k n k n

Observing the system immediately after an imbedded point, we have the Transition 
Probability Matrix (TPM) P with 9 block matrices of  the form                                         

P
 
 

SS SC 0

CS 0 CV . 

3( 1)N m N 



m 0

A
SS



 
 
 VV


 

VS

0

A





The first block SS gives the probability of  transitions among the service completion 
epochs.  The elements of  these block is of  the form 

   
 

, 0

( ),j a

1, 0

,

i a

i b

,

0

j N

j N 1,



A

A

0

       

 

( , 1)(

( ( )), 1 , 0 1, ,

,

i j    
      


, 1) ( ), , ,

( ( )), 1 , ,

, otherwise.

c

c

j i b b i N j N i b
 

j a i b j N

j i b b i N j N j j b

One of  the other block SC of  the TPM gives the probability of  transitions from any 
service completion epoch to the closedown completion epochs. The structure of  this block 
is given by 

      


      



( , 1)( , 2)

( ), 0 1, 0 1,

( ), 0 1, , ,

, otherwise.

c
i j

j i i a j N

j i i a j N j i

C

SC C

0

 

One of  the other block CV of  the TPM gives the probability of  transitions from any 
closedown completion to vacation termination epochs. The structure of  this block is given 
by 
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V

CV V



0

      


      


( , 2)( , 0)

( ), 0 1, 0 1, ,

( ), 0 1, , ,c
i j

 , otherwise.

j i i a j N j i

j i i a j N j i  

The block CS of  the TPM describes the probability of  transition from every closedown 
completion to the next service completion epoch. Clearly this will be the service 
termination of  the first batch after returning from closedown. The block VS of  the TPM 
describes the probability of  transition from every vacation termination epoch to the next 
service completion epochs respectively. Clearly this will be the service termination of  the 
first batch after returning from vacation. For this reason the entire elements of  the blocks 
CS and VS will be the same as the block SS. The last block VV of  the TPM gives the 
probability of  transitions among vacation termination epochs. The elements of  the block 
will be same as CV. 

Now we can obtain the unknown probabilities   ( )(0 ),n n N
)N

  ( )(0 ),n n N
  ( )(0n n

  
by solving the system of  equations   [ ( ) ( )n n   ( )]n [ ( ) ( )n n  

( )]n P

t  t t

 , 1i i m

 
. This system of  equations can be solved using GTH algorithm given in Latouche 

and Ramaswami [16]. 

3.2. Queue Length Distribution at Arbitrary Epoch 

To determine queue length distributions at arbitrary epoch, we will develop relations 
between distributions of  number of  customers in the queue at service completion (vacation 
termination) [closedown] and arbitrary epochs. In order to apply supplementary variable 
method, we relate the states of  the system at two consecutive time epochs  and  
and using probabilistic arguments, we have a set of  partial differential equations for each 
phase . 

  ( , 0) ( , 0) ,n n C


   (0, ) (0, ) ( ) ( , 0)
b

n a

d
x x s x n

dx
                (1) 

  ( , 0) ,n bC D


     

  

( , ) ( , ) ( 1, ) ( ) (

                                                            1 ,

b

n a

d
n x n x n x s x n b

dx
n N b

      , 0) ( , 0)n b
   (2) 

C D        ( , ) ( , ) ( 1, ) , 1 1,
d

n x n x n x N b n N
dx

              (3) 

 D C D    ( , ) ( 1, ) ( , ) , 
d

N x n x N x
dx

                     (4) 

C  (0, ) (0, ) (0, 0) ( ),
d

x x u x
dx

                         (5) 

C D       ( , ) ( , ) ( 1, ) ( ) ( , 0), 1 1,
d

n x n x n x u x n n a
dx

               (6) 

 C D     ( , ) ( , ) ( 1, ) , a 1,
d

n x n x n x n N                   (7) 
dx

 D C D    ( , ) ( 1, ) ( , ) ,
d

N x N x N x
dx

                     (8) 

C   (0, ) (0, ) ( ) (0, 0) (0, 0) ,
d

x x v x
dx

                      (9) 

C D  ) ( 1, ) ( ) ( , 0) (x n x v x n       ( , ) (0, , 0) , 1 1,
d

n x n n a
dx

        (10) 
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The limiting case of  these probabilities is 

  


    ( ) lim ( ( ) , ( ) , ( ) 1), 0 ,j q i i in
i

 p N t n J t j t n N

     ( ) lim ( ( ( ) 2), 0 ,j q in
i

 ) , ( ) ,i ip N t t n Nn J t j

 

 

 ( ) limn  ) , ( ) ,i i ) 0),i
i

 ( ( ( 0 .j qp N t t n N

     1 2( ), ( )........................ ( )],( ) [ mn n nn

n J t j  

The row vectors of  the matrix are given by 

      1 2( ), ( )........................ ( )],( ) [ mn n nn  

 

     1 2( ), ( )........................ ( )].( ) [ mn n nn  

Further, let ,  be the ( )( ( ))[ ( )]n n nA C V  0n m m  matrices whose th  
element represents the conditional probability that ‘n’ customers have been accepted during 
a service(closedown) [vacation] time of  a batch and the underlying Markov chain is in 
phase ‘

( , )i j

j ‘ at the end of  the service(closedown) [vacation] time given that the underlying 
Markov chain was in phase ‘ ‘ at the beginning of  the service(closedown) [vacation]. 
Further, let us denote  

i
A A V C C      ( ) ( ), ( ) V( ), ( ) ( ), 1 .N N N

k n
c c cn k n k n k n N

3( 1)

 k n k n

Observing the system immediately after an imbedded point, we have the Transition 
Probability Matrix (TPM) P with 9 block matrices of  the form                                         

P
 
 

SS SC 0

CS 0 CV . 

3( 1)N m N 



m 0

A
SS



 
 
 VV


 

VS

0

A





The first block SS gives the probability of  transitions among the service completion 
epochs.  The elements of  these block is of  the form 

   
 

, 0

( ),j a

1, 0

,

i a

i b

,

0

j N

j N 1,



A

A

0

       

 

( , 1)(

( ( )), 1 , 0 1, ,

,

i j    
      


, 1) ( ), , ,

( ( )), 1 , ,

, otherwise.

c

c

j i b b i N j N i b
 

j a i b j N

j i b b i N j N j j b

One of  the other block SC of  the TPM gives the probability of  transitions from any 
service completion epoch to the closedown completion epochs. The structure of  this block 
is given by 

      


      



( , 1)( , 2)

( ), 0 1, 0 1,

( ), 0 1, , ,

, otherwise.

c
i j

j i i a j N

j i i a j N j i

C

SC C

0

 

One of  the other block CV of  the TPM gives the probability of  transitions from any 
closedown completion to vacation termination epochs. The structure of  this block is given 
by 
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V

CV V



0

      


      


( , 2)( , 0)

( ), 0 1, 0 1, ,

( ), 0 1, , ,c
i j

 , otherwise.

j i i a j N j i

j i i a j N j i  

The block CS of  the TPM describes the probability of  transition from every closedown 
completion to the next service completion epoch. Clearly this will be the service 
termination of  the first batch after returning from closedown. The block VS of  the TPM 
describes the probability of  transition from every vacation termination epoch to the next 
service completion epochs respectively. Clearly this will be the service termination of  the 
first batch after returning from vacation. For this reason the entire elements of  the blocks 
CS and VS will be the same as the block SS. The last block VV of  the TPM gives the 
probability of  transitions among vacation termination epochs. The elements of  the block 
will be same as CV. 

Now we can obtain the unknown probabilities   ( )(0 ),n n N
)N

  ( )(0 ),n n N
  ( )(0n n

  
by solving the system of  equations   [ ( ) ( )n n   ( )]n [ ( ) ( )n n  

( )]n P

t  t t

 , 1i i m

 
. This system of  equations can be solved using GTH algorithm given in Latouche 

and Ramaswami [16]. 

3.2. Queue Length Distribution at Arbitrary Epoch 

To determine queue length distributions at arbitrary epoch, we will develop relations 
between distributions of  number of  customers in the queue at service completion (vacation 
termination) [closedown] and arbitrary epochs. In order to apply supplementary variable 
method, we relate the states of  the system at two consecutive time epochs  and  
and using probabilistic arguments, we have a set of  partial differential equations for each 
phase . 

  ( , 0) ( , 0) ,n n C


   (0, ) (0, ) ( ) ( , 0)
b

n a

d
x x s x n

dx
                (1) 

  ( , 0) ,n bC D


     

  

( , ) ( , ) ( 1, ) ( ) (

                                                            1 ,

b

n a

d
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The Laplace transforms of  ( , )n x , ( , )n x  and ( , )n x  are given by 
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Multiplying Equations (1) to (12) by sxe  and integrating with respect to  over 0 to 
, we obtain the following transform equations: 
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Using the Equations (14) to (25), we derive certain results in the form of  lemmas. 

Lemma 1  

The entering rate to the closedown or vacation states are equal to the departure rate 
from the closedown state or vacation state in an arbitrary slot, which is given by 
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Proof  is in the Appendix. 

Lemma 2  

The entering rate to closedown state is equal to the departure rate from the closedown 
state in an arbitrary slot, which is given by 

 

Proof  is in the Appendix. 

Lemma 3  

The entering rate to vacation state is equal to the departure rate from the vacation state 
in an arbitrary slot, which is given by 

 
Proof  is in the Appendix. 

Lemma 4  

1. Mean number of  customers served per slot  , multiplied by the mean 
service time of  a server  s  , gives the probability that the server is busy  1

e e

 . That is  
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2. Mean number of  closedowns terminated per slot multiplied by the mean closedown 
time of  a server gives the probability that the server is in closedown job, which is given 
by 
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        1 2
0 0

.( ) ( ,0) 1
N N

n n
un n   
 

3. Mean number of  vacations terminated per slot multiplied by the mean vacation time 
of  a server gives the probability that the server is on vacation, which is given by                       
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Proof  is in the Appendix. 

4. Relation Between Queue Length Distribution at Arbitrary and Various Epochs 

 In this section relationship between the queue length distribution at arbitrary and 
various epochs such as service completion, closedown completion and vacation 
termination epochs and pre arrival epoch are discussed. 

4.1. Relation Between Queue Length Distributions at Arbitrary and Service Completion 
(Closedown) [Vacation Termination] Epochs 

The relationship between the service completion (close down) [vacation termination] 
probabilities  with      are given by  
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0

Multiplying Equations (1) to (12) by sxe  and integrating with respect to  over 0 to 
, we obtain the following transform equations: 
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Using the Equations (14) to (25), we derive certain results in the form of  lemmas. 

Lemma 1  

The entering rate to the closedown or vacation states are equal to the departure rate 
from the closedown state or vacation state in an arbitrary slot, which is given by 
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Proof  is in the Appendix. 

Lemma 2  

The entering rate to closedown state is equal to the departure rate from the closedown 
state in an arbitrary slot, which is given by 

 

Proof  is in the Appendix. 

Lemma 3  

The entering rate to vacation state is equal to the departure rate from the vacation state 
in an arbitrary slot, which is given by 

 
Proof  is in the Appendix. 

Lemma 4  

1. Mean number of  customers served per slot  , multiplied by the mean 
service time of  a server  s  , gives the probability that the server is busy  1
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2. Mean number of  closedowns terminated per slot multiplied by the mean closedown 
time of  a server gives the probability that the server is in closedown job, which is given 
by 

  
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3. Mean number of  vacations terminated per slot multiplied by the mean vacation time 
of  a server gives the probability that the server is on vacation, which is given by                       
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Proof  is in the Appendix. 

4. Relation Between Queue Length Distribution at Arbitrary and Various Epochs 

 In this section relationship between the queue length distribution at arbitrary and 
various epochs such as service completion, closedown completion and vacation 
termination epochs and pre arrival epoch are discussed. 

4.1. Relation Between Queue Length Distributions at Arbitrary and Service Completion 
(Closedown) [Vacation Termination] Epochs 

The relationship between the service completion (close down) [vacation termination] 
probabilities  with      are given by  
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
 

1
( ) ( ,0)n n  , 

1
( ) ( ,0)n n


    and 

1
( ) ( ,0), 0 ,n n n N


    

 0 ( ,0) ( ,0) ( ,0) .N
n n n n    e  



       (26) 

where 

 Theorem 1 

The arbitrary epoch probabilities for service completion, closedown and vacation 
termination epochs are given by 

          
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Proof: By making use of  relations Equation (26), we will determine arbitrary epoch 
probabilities in terms of  service completion or close down or vacation termination epoch 
probabilities. Multiplying Equations (a1) to (a3) by 1/  and using Equation (26), we get 
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Simplifying the above three equations, we get 
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Multiplying Equations (a5) to (a7) by 1/  and using Equation (26) and simplifying, 
we get 
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Multiplying Equations (a9) to (a11) by 1/  and using Equation (26) and simplifying, 
we get 
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( )   and  ( )N e  N e  are sufficient to determine key performance measures.  

The unknown quantities  1  and   which are involved in the above expressions can 
be obtained with the help of  the Theorems and lemmas given below. 
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Proof: Let  be the random variables denoting the length of  busy (vacation) 
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period, then we have 
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Using Lemma 4, dividing numerator and denominator by   and using Equation (26), 
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Lemma 5 

The expression for   in terms of  1  and  
2  is given by   
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Proof  is in the Appendix. 
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Proof: By making use of  relations Equation (26), we will determine arbitrary epoch 
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Multiplying Equations (a5) to (a7) by 1/  and using Equation (26) and simplifying, 
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Using Lemma 4, dividing numerator and denominator by   and using Equation (26), 
we get 

e

e

  ( ) 

 

N

s n

n



e e


  


  

  
 

   

0
1

0 0 0

.
( ) ( ) ( )

n
N N N

n n n
s u vn n  

 

Lemma 5 

The expression for   in terms of  1  and  
2  is given by   
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Proof  is in the Appendix. 
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Lemma 6 

Let  be the  n N( ),  0np 1 m  vector whose j th component is the probability of  
n customers in the queue at arbitrary epoch and the state of  the process is j . Then, in 
vector notation p(n

p      ( ) ( ) ( ) ( ),  0 1,n n n n n N
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4.2. Queue Length Distribution at Pre-arrival Epoch 

Let  be the 1  vector whose j th component is given by j  and it 
gives the steady state probability that an arrival finds n 

 ( )np
 ( 0 )n N  customers in the 

queue and the arrival process is in state j . Then the vector  is given by 
.
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5. Performance Measures 

As the steady state probabilities at service completion, close down, vacation 
termination, departure and arbitrary epochs are derived, various performance measures of  
the queue are obtained in this section 

a. Average number of  customers in the queue at an arbitrary epoch p e

1
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0 ) ).L n
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N
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( (n ec. Average number in the queue when the server is on vacation  
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N
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d. Average number in the queue when the server is on closedown work 
 

2
)N

nqL n  e0( (n  ).
 p e p De e. The loss probability of  an arrival customer is given by . 

6.  Cost Analysis 

Optimization of  cost is necessary to control any system economically. In this section a 
cost model is designed and optimal thresholds is sought that yield minimum cost. Cost 
model is built according to the following considerations:  

 Activating and deactivating the server result in fixed start-up and shut-down costs, 
respectively.  

 When the server is turned off, an idle cost for power, heat, maintenance, etc. is 
charged, and when the server is turned on, attendant, fuel, or other costs may be 
added to the dormant cost to form the running cost.  

 The holding cost is a penalty for delaying a customer in the system.  

 When the server is taking vacations, reward due to vacations is considered. 

 Due to space limitations (finite capacity system) fixed cost for each lost customer is 
considered. 

The survey of  Tadj and Choudhury [26], shows the importance of  optimization 
techniques in queueing systems. Total expected cost function per unit time gives the optimal 
values of  the queueing system. This section is devoted to find these measures. 

6.1. Cost Model   
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where  is the steady state probability vector that '  customers are left at a 
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(Refer Gupta and Sikdar [8]). 
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techniques in queueing systems. Total expected cost function per unit time gives the optimal 
values of  the queueing system. This section is devoted to find these measures. 

6.1. Cost Model   
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


0, if the server finds less than 'a' customers after the first service.

   1, if the server finds 'a' customers after the first service.
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 Cost analysis is important for any managerial decision. In this section we derive the 
total average cost of  the proposed queueing system. In Sections 6.1.1. and 6.1.2., we derive 
the expected busy period E(B) and expected idle period E(I ) which are used in total average 
cost in 6.1.3.  

6.1.1. Busy Period Analysis 

Let B be the busy period random variable. Then we define the random variable J by 

 

Then the expected length of  busy period is given by 

 

Then solving for E B , we get 
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 (Refer p.324, [5]) 

where  is the steady state probability vector that '  customers are left at a 
departure epoch of  a batch, which is give by     0( ) ( ) / ( ) , 0 .N
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(Refer Gupta and Sikdar [8]). 

6.1.2. Idle Period Analysis 

In this model, if  the server finds less than ‘a’ customers in the system, then closedown 
work followed by a vacation of  random length takes place. After returning from vacation, 
still if  less than ‘a’ customers are found and another vacation is made and so on. So we 
need to calculate ‘Idle period due to multiple vacations’ and let that random variable be  

1 . On the other hand when the server finds ‘a’ customers during closedown period, then 
immediately service is done to the batch of  ‘a’ customers without taking vacation.  
Therefore we need to calculate ‘idle period due to close down’ and let it be .   

Let I be the random variable denoting idle period. Then the expected length of  idle 
period is given by E I E I E I


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0, if the server finds 'a' customers after the first closedown period.

    1, if the server finds less than 'a' customers after the first closedown period.
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, which is obtained as follows: 

Define the random variable U as 

     

Then the expected length of  idle period due to closedown period is given by 

 

Then solving for E I , we get 
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Similarly, expected length of  idle period due to multiple vacations is given by 

e

e











 
  

   
 
 

1
1

0

0

( ) ( )
( ) .

( 0) ( )
1

( )

a

N
i

n

E V E V
E I

P U i

n





sC

hC 0C
C 1C

 

6.1.3. Total Average Cost 

To derive the Total average cost we use the following notations. Let  be the start-up 
cost,  be the holding cost per customer per unit time,  be the operating cost per unit 
time, r  be the reward cost per unit time due to vacation,  be the fixed cost for each 
lost customer due to finite capacity. 

The length of  the cycle is the sum of  the idle period and the busy period. 

Therefore the expected length of  cycle is given by  ( ) ( ) ( ).cE T E I E B  
Now the total average cost per unit time is given by 

Total Average Cost = Start-up cost per unit time 
+ holding cost of  the number of  customers in the queue per unit time  
+ operating cost per unit time ×    
– Reward due to vacation per unit time  
+ fixed cost for each lost customer when the system is blocked due to 

space limitations. 

Total Average Cost = 
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7. Computational Aspects 

In this section, we discuss various steps needed for the computation of  the matrices 
, of  the TPM P. In General, the evaluation of  the matrices 
 for arbitrary service (closedown)[vacation] time distribution requires 

numerical integration and can be carried out along the lines proposed by Lucantoni and 
Ramaswami [18]. According to Neuts [20], when the service distribution is of  phase type, 
these matrices can be evaluated without any numerical integration. Also, PH distribution is 
a rich class of  distribution, service (vacation) [closedown] time distributions arising in the 
real world queueing problems that can be easily approximated by it. For computation 
purpose, let us assume that  follows a PH-distribution with irreducible representation 
 , where   and S are of  dimensions . Similarly let V x and  follows a 

PH-distribution with irreducible representations 
1m ( ) ( )C x

T( , ) , U( , ) , where   and T,   and 
U are of  dimensions  respectively.  Then the matrices A(n),  and  can 
be computed using the procedure described in Neuts [20], Gupta and Laxmi [7]. 

2 3,m m ( )nV ( )nC

1,10
2E

 
   

4.475 1.35

1.695 3.275
C

 
  
 

1.475 1.65

0.305 1.275
D

7.1. Numerical Illustration 

The cost analysis of  MAP/  /1/50 queue with multiple vacation and closedown 
times (both follow PH – distribution) are given in the following input parameters: 

;  , 
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1.71  

with m = 2,  and   0.7693.  
Tables 1 and 2 give the performance measures, total average cost and the unknown 

probabilities for various numbers of  customers in the system with and without closedown 
times. From these two tables, one can observe the following: 

 Expected number of  customers in the system and the server’s busy period increases in 
without closedown times. 

 Server’s idle period decreases and the total average cost increases in without 
closedown time.  

 
Table 1. Performance measures and unknown probabilities for various number of  customers 
in the system when N = 25 (With closedown time). 

    (n)(n)  ( )n   
a E(Q) E(B) E(I) 

Total average
cost K=1 K=2 K=1 K=2 K=1 K=2 

1 4.458652 0.688971 0.060553 11.246222 0.02652647 0.01754913 0.00003172 0.00001883 0.00001211 0.00000678

2 4.531694 0.643209 0.159838 10.381957 0.02648340 0.01752299 0.00022330 0.00013228 0.00008152 0.00004558

3 3.924525 0.539133 0.251845 9.573141 0.02680649 0.01783482 0.00143084 0.00084695 0.00062707 0.00035130

4 3.756351 0.469630 0.326363 8.955703 0.02484903 0.01659649 0.00480069 0.00284005 0.00220663 0.00123866

5 3.312172 0.395936 0.345982 8.603588 0.02248363 0.01509596 0.01401482 0.00830171 0.00686748 0.00387654

6 3.505264 0.371889 0.381384 8.422668 0.01984007 0.01333326 0.02463060 0.01474903 0.01128984 0.00647841

7 3.481549 0.348867 0.377857 8.373304 0.01672000 0.01226618 0.03777051 0.02594161 0.01639091 0.01100920

8 3.184589 0.327722 0.331598 8.435056 0.01495531 0.01100110 0.03243166 0.02229791 0.01447377 0.00974227

9 3.417872 0.300355 0.446723 8.590582 0.01355628 0.01001581 0.02738454 0.01886372 0.01284156 0.00867485

10 3.642044 0.314771 0.320034 8.679445 0.01289333 0.00951669 0.02854311 0.01961353 0.01235119 0.00833160

 
Table 2. Performance measures and unknown probabilities for various number of  customers 
in the system when N = 25 (Without closedown time). 

  ( )n  ( )n  
a E(Q) E(B) E(I) 

Total average 
cost K=1 K=2 K=1 K=2 

2 4.289986 0.673164 0.055695 10.864881 0.02495144 0.01650782 0.00029585 0.00017566

3 4.201676 0.657518 0.061612 10.592852 0.02284754 0.01511706 0.00072986 0.00043327

4 3.788409 0.599739 0.088202 10.339895 0.02204008 0.01458724 0.00221654 0.00131250

5 3.419378 0.537052 0.116147 9.6257039 0.02269932 0.01517061 0.01366927 0.00808629

6 3.540089 0.512297 0.145304 9.495535 0.01870086 0.01242118 0.01004058 0.00594061

7 3.662333 0.485285 0.170346 9.262158 0.01672000 0.01226618 0.03777051 0.02594161

8 3.755745 0.456334 0.187217 8.657669 0.01495531 0.01100110 0.03243166 0.02229791

9 3.777455 0.425396 0.191043 9.042243 0.01456480 0.00972436 0.03767304 0.02252267

10 4.395549 0.430757 0.202887 9.667246 0.01289333 0.00951669 0.02854311 0.01961353

Tables 3 and 4 give the unknown probabilities for bulk service with various number of  
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Similarly, expected length of  idle period due to multiple vacations is given by 
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6.1.3. Total Average Cost 

To derive the Total average cost we use the following notations. Let s  be the start-up 
cost,  be the holding cost per customer per unit time,  be the operating cost per unit 
time, r  be the reward cost per unit time due to vacation,  be the fixed cost for each 
lost customer due to finite capacity. 

The length of  the cycle is the sum of  the idle period and the busy period. 

Therefore the expected length of  cycle is given by ( ) ( ).( )cE T E I E B  
Now the total average cost per unit time is given by 

Total Average Cost = Start-up cost per unit time 
+ holding cost of  the number of  customers in the queue per unit time  
+ operating cost per unit time ×    
– Reward due to vacation per unit time  
+ fixed cost for each lost customer when the system is blocked due to 

space limitations. 

Total Average Cost =  ( ( ) / ( 0)) (1/ ( )) ,0s r c h q l lossC C E V P U E T C L C C P     
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 where  

7. Computational Aspects 

In this section, we discuss various steps needed for the computation of  the matrices 
, of  the TPM P. In General, the evaluation of  the matrices 
 for arbitrary service (closedown)[vacation] time distribution requires 

numerical integration and can be carried out along the lines proposed by Lucantani and 
Ramaswami [18]. According to Neuts [20], when the service distribution is of  phase type, 
these matrices can be evaluated without any numerical integration. Also, PH distribution is 
a rich class of  distribution, service (vacation) [closedown] time distributions arising in the 
real world queueing problems that can be easily approximated by it. For computation 
purpose, let us assume that  follows a PH-distribution with irreducible representation 
 , where   and S are of  dimensions m . Similarly let V x and  follows a 

PH-distribution with irreducible representations 
1 ( ) ( )C x

T( , ) , U( , ) , where   and T,   and 
U are of  dimensions  respectively.  Then the matrices A(n),  and C  can 
be computed using the procedure described in Neuts [20], Gupta and Laxmi [7]. 

2 3,m m ( )nV ( )n
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2E

 
  

4.475 1.35

3.275

 
  
 

1.475 1.65

0.305 1.275
D

7.1. Numerical Illustration 

The cost analysis of  MAP/  /1/50 queue with multiple vacation and closedown 
times (both follow PH – distribution) are given in the following input parameters: 

C
1.695
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with m = 2,  and   0.7693.  
Tables 1 and 2 give the performance measures, total average cost and the unknown 

probabilities for various numbers of  customers in the system with and without closedown 
times. From these two tables, one can observe the following: 

 Expected number of  customers in the system and the server’s busy period increases in 
without closedown times. 

 Server’s idle period decreases and the total average cost increases in without 
closedown time.  

 
Table 1. Performance measures and unknown probabilities for various number of  customers 
in the system when N = 25 (With closedown time). 

    (n)(n)  ( )n   
a E(Q) E(B) E(I) 

Total average
cost K=1 K=2 K=1 K=2 K=1 K=2 

1 4.458652 0.688971 0.060553 11.246222 0.02652647 0.01754913 0.00003172 0.00001883 0.00001211 0.00000678

2 4.531694 0.643209 0.159838 10.381957 0.02648340 0.01752299 0.00022330 0.00013228 0.00008152 0.00004558

3 3.924525 0.539133 0.251845 9.573141 0.02680649 0.01783482 0.00143084 0.00084695 0.00062707 0.00035130

4 3.756351 0.469630 0.326363 8.955703 0.02484903 0.01659649 0.00480069 0.00284005 0.00220663 0.00123866

5 3.312172 0.395936 0.345982 8.603588 0.02248363 0.01509596 0.01401482 0.00830171 0.00686748 0.00387654

6 3.505264 0.371889 0.381384 8.422668 0.01984007 0.01333326 0.02463060 0.01474903 0.01128984 0.00647841

7 3.481549 0.348867 0.377857 8.373304 0.01672000 0.01226618 0.03777051 0.02594161 0.01639091 0.01100920

8 3.184589 0.327722 0.331598 8.435056 0.01495531 0.01100110 0.03243166 0.02229791 0.01447377 0.00974227

9 3.417872 0.300355 0.446723 8.590582 0.01355628 0.01001581 0.02738454 0.01886372 0.01284156 0.00867485

10 3.642044 0.314771 0.320034 8.679445 0.01289333 0.00951669 0.02854311 0.01961353 0.01235119 0.00833160

 
Table 2. Performance measures and unknown probabilities for various number of  customers 
in the system when N = 25 (Without closedown time). 

  ( )n  ( )n  
a E(Q) E(B) E(I) 

Total average 
cost K=1 K=2 K=1 K=2 

2 4.289986 0.673164 0.055695 10.864881 0.02495144 0.01650782 0.00029585 0.00017566

3 4.201676 0.657518 0.061612 10.592852 0.02284754 0.01511706 0.00072986 0.00043327

4 3.788409 0.599739 0.088202 10.339895 0.02204008 0.01458724 0.00221654 0.00131250

5 3.419378 0.537052 0.116147 9.6257039 0.02269932 0.01517061 0.01366927 0.00808629

6 3.540089 0.512297 0.145304 9.495535 0.01870086 0.01242118 0.01004058 0.00594061

7 3.662333 0.485285 0.170346 9.262158 0.01672000 0.01226618 0.03777051 0.02594161

8 3.755745 0.456334 0.187217 8.657669 0.01495531 0.01100110 0.03243166 0.02229791

9 3.777455 0.425396 0.191043 9.042243 0.01456480 0.00972436 0.03767304 0.02252267

10 4.395549 0.430757 0.202887 9.667246 0.01289333 0.00951669 0.02854311 0.01961353

Tables 3 and 4 give the unknown probabilities for bulk service with various number of  
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customers in the system for the system capacity N = 50 and N = 25 respectively. 

Table 5 gives the total average cost for various system capacities with the fixed 
threshold value. From this, total average cost decreases with increase in the system capacity 
for the threshold value a = 7. The cost values assumed in this model are 

 4;sC  00.50; 5; 1;h rC C C    0.25; 6.u lC C  
 

Table 3. Unknown probabilities for bulk service vs. various number of  customers in the 
system when N = 50. 

n/a 1 2 3 4 5 6 7 8 9 10 

0 0.064314 0.063509 0.068475 0.058482 0.054326 0.049212 0.043118 0.035833 0.026889 0.015444

5 0.059466 0.068285 0.090399 0.098216 0.118873 0.141577 0.129652 0.117058 0.103710 0.089161

10 0.043113 0.051338 0.069952 0.076767 0.091831 0.107196 0.122246 0.136667 0.149638 0.163637

15 0.029903 0.038193 0.055487 0.063860 0.078803 0.093578 0.107257 0.119126 0.127833 0.135285

20 0.020781 0.029161 0.045670 0.055321 0.070577 0.085612 0.099411 0.111166 0.119413 0.125902

25 0.014802 0.023245 0.039251 0.049761 0.065263 0.080536 0.094521 0.106368 0.114561 0.120792

30 0.010935 0.019419 0.035102 0.046169 0.061835 0.077269 0.091386 0.103308 0.111493 0.117593

35 0.008480 0.016990 0.032468 0.043889 0.059659 0.075195 0.089397 0.101369 0.109550 0.115570

40 0.007280 0.015804 0.031181 0.042775 0.058595 0.074182 0.088425 0.100422 0.108601 0.114582

45 0.005586 0.014128 0.029363 0.041201 0.057094 0.072752 0.087053 0.099083 0.107260 0.113186

50 0.008205 0.013476 0.056046 0.047495 0.060566 0.074376 0.091573 0.107674 0.122930 0.126017

 
Table 4. Unknown probabilities for bulk service vs. various number of  customers in the 
system when N = 25. 

n/a 1 2 3 4 5 6 7 8 9 10 

0 0.07133259 0.06986017 0.067985 0.06429409 0.059453 0.053631 0.046842 0.038870 0.053924 0.016835

2 0.07466214 0.08671663 0.106182 0.10119590 0.094928 0.087905 0.080516 0.072738 0.096114 0.050279

4 0.06921129 0.07906965 0.095054 0.11587079 0.140425 0.130619 0.120634 0.110713 0.123730 0.085925

6 0.06245147 0.07147820 0.085508 0.10261685 0.122866 0.146223 0.171090 0.157349 0.148828 0.126207

8 0.05525850 0.06402066 0.077402 0.09311807 0.110734 0.129784 0.150316 0.172540 0.178007 0.173461

10 0.04795073 0.05666417 0.069910 0.08524595 0.101995 0.119368 0.137003 0.154796 0.166481 0.187911

12 0.04088728 0.04963191 0.062936 0.07828239 0.094869 0.111744 0.128338 0.144271 0.155465 0.169774

14 0.03436519 0.04316695 0.056595 0.07209020 0.088778 0.105613 0.121915 0.137169 0.145675 0.159300

16 0.03321198 0.04202261 0.055463 0.07096230 0.087624 0.104377 0.120507 0.135453 0.144225 0.156282

18 0.02580714 0.03470241 0.048335 0.06410887 0.081077 0.098105 0.114416 0.129382 0.132943 0.149424

20 0.01992742 0.02889114 0.042679 0.05867876 0.075904 0.093172 0.109661 0.124696 0.123954 0.144318

22 0.01548021 0.02449612 0.038403 0.05457594 0.071999 0.089458 0.106095 0.121203 0.117135 0.140581

24 0.01221983 0.02127417 0.035268 0.05156967 0.069141 0.086742 0.103492 0.118661 0.112124 0.137888

 
Table 5. System capacity vs. Total average cost. 

Threshold Value a System Capacity N Total average Cost 
7 15 8.391925 
7 25 8.373304 
7 35 8.234628 
7 45 8.177738 
7 50 8.177716 
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7.2. Optimal Cost 

Simple direct search method (refer Jeyakumar and Arumuganathan [12]) is used to 
find the optimal policy for a threshold value ‘a’ to minimize the total average cost.  For a 
fixed system capacity N = 50 and the maximum number of  customers in a batch of  service 
b = 10, total average cost is obtained for ‘a’ equal to 1 to 10, and is given in the following 
Table 6.  

Also the Figures 2-4 give the relationship between total average cost and threshold 
value with the following assumption of  cost values   4; 0.50; 5;C 1;C0s hC C r   

u l  in rupees. From Table 6 and Figure 2, it is observed that the threshold 
value a = 7 gives the minimum total average cost when the maximum capacity of  the 
system is 50. This is used to help the network designers to fix the minimum threshold value 
a = 7 in order to minimise the total average cost. 

0.25; 6C C 



Figures 3 and 4 give the total average cost for different threshold values (‘a’ from 1 
through 10) and the fixed batch size b = 10 with the system capacity N = 25 by considering 
without and with closedown times respectively. It is observed that the total average cost 
without closedown time is more than the total average cost with closedown time. So, the 
consideration of  closedown times is beneficial for the management to achieve their task 
with minimal cost.  

 
Table 6. Performance measures and unknown probabilities for various number of  customers 
in the system when N = 50. 

 ( )n  ( )n  ( )n  
a E(Q) E(B) E(I) 

Total 
average cost K=1 K=2 K=1 K=2 K=1 K=2 

1 6.155834 0.803419 0.062540 11.360755 0.02088149 0.01363176 0.00001283 0.00000753 0.00000345 0.00000191

2 4.683880 0.615260 0.160977 10.399948 0.02262521 0.01480430 0.00013605 0.00007985 0.00004183 0.00002316

3 3.935412 0.540643 0.253536 9.545310 0.02466209 0.01624296 0.00132093 0.00077455 0.00057886 0.00032125

4 3.395916 0.423658 0.296784 8.970882 0.02309866 0.01527146 0.00447060 0.00261994 0.00205506 0.00114275

5 3.837074 0.399854 0.377365 8.535852 0.02060506 0.01362860 0.00871183 0.00510507 0.00368768 0.00205373

6 3.167473 0.331292 0.350043 8.285265 0.01874904 0.01247400 0.02328494 0.01381227 0.01067735 0.00606939

7 3.121183 0.304134 0.347942 8.177716 0.01579412 0.01157932 0.03569894 0.02451000 0.01549195 0.01040037

8 4.113374 0.312829 0.432193 8.189498 0.01407076 0.01028356 0.03794790 0.02594085 0.01418776 0.00948849

9 3.634541 0.281583 0.368405 8.213433 0.01294829 0.00949660 0.03250033 0.02225259 0.01280805 0.00859127

10 3.109171 0.248948 0.293930 8.324147 0.01219564 0.00899319 0.02707158 0.01859162 0.01170176 0.00788712

 
8. Conclusion 

This paper gives the cost analysis of  finite queues with batch service with multiple 
vacations and closedown times are analysed using embedded Markov chain and 
supplementary variable technique. Queue length distribution at various epochs is obtained.  
Relation between queue length distribution at arbitrary and various epochs are discussed. 
The measures of  interest are also evaluated with numerical illustration. The closedown 
concept is introduced and the effect with or without closedown model is discussed. Costs 
analysis is done. Optimal threshold value is obtained for a batch service queue. The model 
is more effective on account of  the inactive timer in the SVC which is activated using 
closedown time. Cost analysis is used to help the network designers to achieve the 
minimum cost by properly choosing the threshold value. For further investigation, cost 
analysis of  the other complex models such as MAP/G(a, b)/1/N and BMAP/G(a, b)/1/N 
with working vacations and closedown times can be explored. 
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customers in the system for the system capacity N = 50 and N = 25 respectively. 

Table 5 gives the total average cost for various system capacities with the fixed 
threshold value. From this, total average cost decreases with increase in the system capacity 
for the threshold value a = 7. The cost values assumed in this model are 

 4;sC  00.50; 5; 1;h rC C C    0.25; 6.u lC C  
 

Table 3. Unknown probabilities for bulk service vs. various number of  customers in the 
system when N = 50. 

n/a 1 2 3 4 5 6 7 8 9 10 

0 0.064314 0.063509 0.068475 0.058482 0.054326 0.049212 0.043118 0.035833 0.026889 0.015444

5 0.059466 0.068285 0.090399 0.098216 0.118873 0.141577 0.129652 0.117058 0.103710 0.089161

10 0.043113 0.051338 0.069952 0.076767 0.091831 0.107196 0.122246 0.136667 0.149638 0.163637

15 0.029903 0.038193 0.055487 0.063860 0.078803 0.093578 0.107257 0.119126 0.127833 0.135285

20 0.020781 0.029161 0.045670 0.055321 0.070577 0.085612 0.099411 0.111166 0.119413 0.125902

25 0.014802 0.023245 0.039251 0.049761 0.065263 0.080536 0.094521 0.106368 0.114561 0.120792

30 0.010935 0.019419 0.035102 0.046169 0.061835 0.077269 0.091386 0.103308 0.111493 0.117593

35 0.008480 0.016990 0.032468 0.043889 0.059659 0.075195 0.089397 0.101369 0.109550 0.115570

40 0.007280 0.015804 0.031181 0.042775 0.058595 0.074182 0.088425 0.100422 0.108601 0.114582

45 0.005586 0.014128 0.029363 0.041201 0.057094 0.072752 0.087053 0.099083 0.107260 0.113186

50 0.008205 0.013476 0.056046 0.047495 0.060566 0.074376 0.091573 0.107674 0.122930 0.126017

 
Table 4. Unknown probabilities for bulk service vs. various number of  customers in the 
system when N = 25. 

n/a 1 2 3 4 5 6 7 8 9 10 

0 0.07133259 0.06986017 0.067985 0.06429409 0.059453 0.053631 0.046842 0.038870 0.053924 0.016835

2 0.07466214 0.08671663 0.106182 0.10119590 0.094928 0.087905 0.080516 0.072738 0.096114 0.050279

4 0.06921129 0.07906965 0.095054 0.11587079 0.140425 0.130619 0.120634 0.110713 0.123730 0.085925

6 0.06245147 0.07147820 0.085508 0.10261685 0.122866 0.146223 0.171090 0.157349 0.148828 0.126207

8 0.05525850 0.06402066 0.077402 0.09311807 0.110734 0.129784 0.150316 0.172540 0.178007 0.173461

10 0.04795073 0.05666417 0.069910 0.08524595 0.101995 0.119368 0.137003 0.154796 0.166481 0.187911

12 0.04088728 0.04963191 0.062936 0.07828239 0.094869 0.111744 0.128338 0.144271 0.155465 0.169774

14 0.03436519 0.04316695 0.056595 0.07209020 0.088778 0.105613 0.121915 0.137169 0.145675 0.159300

16 0.03321198 0.04202261 0.055463 0.07096230 0.087624 0.104377 0.120507 0.135453 0.144225 0.156282

18 0.02580714 0.03470241 0.048335 0.06410887 0.081077 0.098105 0.114416 0.129382 0.132943 0.149424

20 0.01992742 0.02889114 0.042679 0.05867876 0.075904 0.093172 0.109661 0.124696 0.123954 0.144318

22 0.01548021 0.02449612 0.038403 0.05457594 0.071999 0.089458 0.106095 0.121203 0.117135 0.140581

24 0.01221983 0.02127417 0.035268 0.05156967 0.069141 0.086742 0.103492 0.118661 0.112124 0.137888

 
Table 5. System capacity vs. Total average cost. 

Threshold Value a System Capacity N Total average Cost 
7 15 8.391925 
7 25 8.373304 
7 35 8.234628 
7 45 8.177738 
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7.2. Optimal Cost 

Simple direct search method (refer Jeyakumar and Arumuganathan [12]) is used to 
find the optimal policy for a threshold value ‘a’ to minimize the total average cost.  For a 
fixed system capacity N = 50 and the maximum number of  customers in a batch of  service 
b = 10, total average cost is obtained for ‘a’ equal to 1 to 10, and is given in the following 
Table 6.  

Also the Figures 2-4 give the relationship between total average cost and threshold 
value with the following assumption of  cost values   4; 0.50; 5;C 1;C0s hC C r   

u l  in rupees. From Table 6 and Figure 2, it is observed that the threshold 
value a = 7 gives the minimum total average cost when the maximum capacity of  the 
system is 50. This is used to help the network designers to fix the minimum threshold value 
a = 7 in order to minimise the total average cost. 

0.25; 6C C 



Figures 3 and 4 give the total average cost for different threshold values (‘a’ from 1 
through 10) and the fixed batch size b = 10 with the system capacity N = 25 by considering 
without and with closedown times respectively. It is observed that the total average cost 
without closedown time is more than the total average cost with closedown time. So, the 
consideration of  closedown times is beneficial for the management to achieve their task 
with minimal cost.  

 
Table 6. Performance measures and unknown probabilities for various number of  customers 
in the system when N = 50. 

 ( )n  ( )n  ( )n  
a E(Q) E(B) E(I) 

Total 
average cost K=1 K=2 K=1 K=2 K=1 K=2 

1 6.155834 0.803419 0.062540 11.360755 0.02088149 0.01363176 0.00001283 0.00000753 0.00000345 0.00000191

2 4.683880 0.615260 0.160977 10.399948 0.02262521 0.01480430 0.00013605 0.00007985 0.00004183 0.00002316

3 3.935412 0.540643 0.253536 9.545310 0.02466209 0.01624296 0.00132093 0.00077455 0.00057886 0.00032125

4 3.395916 0.423658 0.296784 8.970882 0.02309866 0.01527146 0.00447060 0.00261994 0.00205506 0.00114275

5 3.837074 0.399854 0.377365 8.535852 0.02060506 0.01362860 0.00871183 0.00510507 0.00368768 0.00205373

6 3.167473 0.331292 0.350043 8.285265 0.01874904 0.01247400 0.02328494 0.01381227 0.01067735 0.00606939

7 3.121183 0.304134 0.347942 8.177716 0.01579412 0.01157932 0.03569894 0.02451000 0.01549195 0.01040037

8 4.113374 0.312829 0.432193 8.189498 0.01407076 0.01028356 0.03794790 0.02594085 0.01418776 0.00948849

9 3.634541 0.281583 0.368405 8.213433 0.01294829 0.00949660 0.03250033 0.02225259 0.01280805 0.00859127

10 3.109171 0.248948 0.293930 8.324147 0.01219564 0.00899319 0.02707158 0.01859162 0.01170176 0.00788712

 
8. Conclusion 

This paper gives the cost analysis of  finite queues with batch service with multiple 
vacations and closedown times are analysed using embedded Markov chain and 
supplementary variable technique. Queue length distribution at various epochs is obtained.  
Relation between queue length distribution at arbitrary and various epochs are discussed. 
The measures of  interest are also evaluated with numerical illustration. The closedown 
concept is introduced and the effect with or without closedown model is discussed. Costs 
analysis is done. Optimal threshold value is obtained for a batch service queue. The model 
is more effective on account of  the inactive timer in the SVC which is activated using 
closedown time. Cost analysis is used to help the network designers to achieve the 
minimum cost by properly choosing the threshold value. For further investigation, cost 
analysis of  the other complex models such as MAP/G(a, b)/1/N and BMAP/G(a, b)/1/N 
with working vacations and closedown times can be explored. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 0
7:

57
 2

1 
M

ar
ch

 2
01

6 



622                                                            Vadivu and Arumuganathan 

 

               
Figure 2. Threshold value vs. Total average cost for N = 50 (with closedown times). 

 

 
Figure 3. Threshold value vs. Total average cost for N = 25 (without closedown times).  

 

 
Figure 4. Threshold value vs. Total average cost for N = 25 (with closedown times). 
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Figure 2. Threshold value vs. Total average cost for N = 50 (with closedown times). 

 

 
Figure 3. Threshold value vs. Total average cost for N = 25 (without closedown times).  

 

 
Figure 4. Threshold value vs. Total average cost for N = 25 (with closedown times). 
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Appendix 

Proof  of  Lemma 1: 

 Substituting  0s

 C


   (0, 0) (0) ( , 0) ( , 0) ( , 0) ,
b

n a
n n n    

C D           ( , 0) ( ) ( 1) ( , 0) ( , 0) ( , 0), 1 ,n n n n b n b n b n N b

 in Equations (14) to (17), we get 

               (a1) 

    

C D       ( , 0) ( ) ( 1) ,  1 1,n n n N b n N

  (a2) 

                  (a3) 

 C D D   ( , 0) ( ) ( 1) .N N N  

e
 ( ) 0C D e

 e e


 
  

1

0
( ,0) ( ,0) ( ,0)

a N

n n a
n n n  

                    (a4) 

 Post multiplying Equations (a1) to (a4) by , adding over all possible values of  n and 
using , we get 

.
 

Proof  of  Lemma 2: 

 Substituting  0s  in Equations (18) to (21), we get 

 (0,0) (0) (0,0),   C                          (a5) 
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C D      ( , 0) ( ) ( 1) ( , 0), 1 1,n n n n n a  

C D     ( , 0) ( ) ( 1) , 1,n n n a n N

               (a6) 

                    (a7) 

 C D D   ( , 0) ( ) ( 1) . N N N                     (a8) 

Post multiplying Equations (a5) to (a8) by , adding all possible values of  n and using   
, we get 

e
 ( ) 0C D e

e e
 

 ( , 0) ( , 0)
N a

n n
n n

1

0 0
 . 

Proof  of  Lemma 3: 

 Substituting  0s

C

 in Equations (22) to (25), we get 

  (0, 0) (0) (0, 0) (0, 0),     

C D       ( , 0) ( ) ( 1) ( , 0) ( , 0), 1 1,n n n n n n a

                   (a9) 

    

  ( , 0) 1,n N

     (a10) 

C D  ( ) ( 1) , n n n a                   (a11) 

 C D D   ( , 0) ( ) ( 1) .   N N N                   (a12) 

Post multiplying Equations (a9) to (a12) by , adding all possible values of  n and 
using , we get  

e
 ( ) 0C D e

 e e 
1

0
( , 0) ( , 0)

n a
n n 

 0s

 C    (0) (0) ( ,0) ( ,0) ( ,0) ,
b

n n n    



 

N a

n
. 

Proof  of  Lemma 4: 

 Differentiating Equations (14) to (25) with respect to s and substituting  in the 
these equations, we get 

             (a13) 


s
n a

       ( ) ( ) ( 1) ,0) ,  1 ,n n n b n N b  C D      ( ,0) ( ,0) (s n b n b n    (a14) 

C D        ( ) ( ) ( 1) , b 1 1,n n n N n N                (a15) 

C D D    ( ) ( )( ) ( 1) ,N N N                        (a16) 

C  (0) (0) ( (0,0)),u                           (a17) 

C D       ( ) ( ) ( 1) ,0)), 1 1,un n n n n a  ( ( 

( ) 1,N

             (a18) 

C D     ( ) ( 1)n n n a n , 

C D D

                  (a19) 

    ( )( ) ( 1)N N N( ) ,                       (a20) 

 C   (0) (0) (0,0) (0,0) ,v                       (a21) 

 C D         ( ) ( ) ( 1) ( ,0) ( ,0) ,  1 1,vn n n n n n a             (a22) 

C D      ( ) ( ) ( 1) ,  1,n n n a n N                    (a23) 

 C D D    ( ) ( ) ( 1) .  N N N                     (a24) 
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Appendix 

Proof  of  Lemma 1: 

 Substituting  0s

 C


   (0, 0) (0) ( , 0) ( , 0) ( , 0) ,
b

n a
n n n    

C D           ( , 0) ( ) ( 1) ( , 0) ( , 0) ( , 0), 1 ,n n n n b n b n b n N b

 in Equations (14) to (17), we get 

               (a1) 

    

C D       ( , 0) ( ) ( 1) ,  1 1,n n n N b n N

  (a2) 

                  (a3) 

 C D D   ( , 0) ( ) ( 1) .N N N  

e
 ( ) 0C D e

 e e


 
  

1

0
( ,0) ( ,0) ( ,0)

a N

n n a
n n n  

                    (a4) 

 Post multiplying Equations (a1) to (a4) by , adding over all possible values of  n and 
using , we get 

.
 

Proof  of  Lemma 2: 

 Substituting  0s  in Equations (18) to (21), we get 

 (0,0) (0) (0,0),   C                          (a5) 
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C D      ( , 0) ( ) ( 1) ( , 0), 1 1,n n n n n a  

C D     ( , 0) ( ) ( 1) , 1,n n n a n N

               (a6) 

                    (a7) 

 C D D   ( , 0) ( ) ( 1) . N N N                     (a8) 

Post multiplying Equations (a5) to (a8) by , adding all possible values of  n and using   
, we get 

e
 ( ) 0C D e

e e
 

 ( , 0) ( , 0)
N a

n n
n n

1

0 0
 . 

Proof  of  Lemma 3: 

 Substituting  0s

C

 in Equations (22) to (25), we get 

  (0, 0) (0) (0, 0) (0, 0),     

C D       ( , 0) ( ) ( 1) ( , 0) ( , 0), 1 1,n n n n n n a

                   (a9) 

    

  ( , 0) 1,n N

     (a10) 

C D  ( ) ( 1) , n n n a                   (a11) 

 C D D   ( , 0) ( ) ( 1) .   N N N                   (a12) 

Post multiplying Equations (a9) to (a12) by , adding all possible values of  n and 
using , we get  

e
 ( ) 0C D e

 e e 
1

0
( , 0) ( , 0)

n a
n n 

 0s

 C    (0) (0) ( ,0) ( ,0) ( ,0) ,
b

n n n    



 

N a

n
. 

Proof  of  Lemma 4: 

 Differentiating Equations (14) to (25) with respect to s and substituting  in the 
these equations, we get 

             (a13) 


s
n a

       ( ) ( ) ( 1) ,0) ,  1 ,n n n b n N b  C D      ( ,0) ( ,0) (s n b n b n    (a14) 

C D        ( ) ( ) ( 1) , b 1 1,n n n N n N                (a15) 

C D D    ( ) ( )( ) ( 1) ,N N N                        (a16) 

C  (0) (0) ( (0,0)),u                           (a17) 

C D       ( ) ( ) ( 1) ,0)), 1 1,un n n n n a  ( ( 

( ) 1,N

             (a18) 

C D     ( ) ( 1)n n n a n , 

C D D

                  (a19) 

    ( )( ) ( 1)N N N( ) ,                       (a20) 

 C   (0) (0) (0,0) (0,0) ,v                       (a21) 

 C D         ( ) ( ) ( 1) ( ,0) ( ,0) ,  1 1,vn n n n n n a             (a22) 

C D      ( ) ( ) ( 1) ,  1,n n n a n N                    (a23) 

 C D D    ( ) ( ) ( 1) .  N N N                     (a24) 
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Post multiplying Equations (a13) to (a16) by , adding all possible values of  n and 
using  and also the Lemma 1, we get 

e
 ( ) 0C D e

e e 
 

      0 0
( ) ( ,0)

n n
sn n 

N N

1

 ( ) 0C D e

. 

Post multiplying Equations (a17) to (a20) by , adding all possible values of  n and 
using  and also the Lemma 2, we get 

e

e e 
 

   

(C D

     1 2
0 0

( ) ( ,0) 1
N N

n n
un n  . 

Post multiplying Equations (a21) to (a24) by , adding all possible values of  n and 
using  and also the Lemma 3, we get 

e
) 0e

e e 
 

       2
0 0

( ) ( ,0)
n n

vn n 
N N

. 

Proof  of  Lemma 5: 

As e      1( ,0)
N

n e



0n
s  ,   



    0
( ,0)

N

n
v n e2  ,   


       1 2

0
( ,0) 1

N

n
u n

 e)n

.  

Using these equations in , 


  
0

( ,0) ( ,0) ( ,0
N

n
n n  

   


 

    
 1 2 1 21

s v 


u
,  

         


  
     

 1 2 1 2 )(1v u s u v s

v u s .
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