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The thermal decomposition and microwave heating of Co3[Co(CN)6]2 leads to formation of nanos-
tructured porous cobalt oxide (Co3O4). Here, we report Co3[Co(CN)6]2 as a novel single source precursor
for the synthesis of phase pure Co3O4 particles at 650 °C under mixed argon/oxygen atmosphere as
evidenced from X-ray diffraction (XRD) patterns. During thermal decomposition, release of gaseous
products like CO2, NxOy, (CN)2 facilitate the formation of a highly porous Co3O4 whose morphology and
particle size distribution were characterized using scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) respectively. Porous Co3O4 shows high discharge capacity of 1131 mA h g�1

with 96% coulombic efficiency against Li/Liþ reference electrode.
& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Cobalt oxide (Co3O4) attracts the attention of the materials
researchers because of its promising applications in various fields
viz., anode material for Li-ion batteries (LIBs) [1], super capacitors
[2], gas sensors [3], catalytic processes [4] etc. Co3O4 nanoparticles
were synthesized through various routes that include the com-
monly employed oxidative precipitation [5], thermal decomposi-
tion [6,7], hydrothermal synthesis [8,9] etc., Synthesis of metal
oxides like NiO, Co3O4, from single source precursors is a simple
approach to make a porous structure for increasing material per-
formance [10,11]. A few examples of single source precursors in-
clude (NH4)2Co8(CO3)6(OH)6 �4H2O [12], Co(CO3)0.5(OH)0.1 �1H2O
[7,13], Co4(CO)12 [14], prussian blue [15]. Epple's group have
shown that how crystal structure of the precursor dictates the
structure and morphology of the resulting products when ther-
molysis was carried out under moderate temperatures [16,17]. The
catalytic activity towards the formation of methanol from syn-
thetic gas (CO/CO2/H2) was studied using Cu/ZnO catalyst. Sur-
prisingly, catalytic activity was not observed on Cu/ZnO catalysts
synthesized from Cu[Zn(CN)3] whereas the Cu/ZnO synthesized
ph).
from complex containing ethylenediamine and cyanide as ligands
showed 20–30% catalytic activity [17]. These observations high-
light the role of the precursor in determining the crystal structure
of metal oxides and their catalytic properties. In this work, we
present the formation of porous Co3O4 from Co3[Co(CN)6]2 by both
thermal decomposition and microwave synthesis and its applica-
tion towards Li-ion battery.
2. Results and discussion

2.1. Synthesis and characterization of Co3[Co(CN)6]2

The precipitate Co3[Co(CN)6]2 �12H2O was obtained by mixing
the solutions of cobalt acetate and potassium hexacyano cobaltate
(III). The product can easily be identified by its reversible color
transitions in hydrated and dehydrated forms. Similar observa-
tions were reported in the literature and attributed to the inter
conversion of octahedral to tetrahedral co-ordination of Co2þ site
[18]. The compound was further confirmed by using FT-IR and XRD
analysis.

2.2. Phase composition analysis

From TGA results (Fig. S1A), it was observed that the
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Fig. 1. XRD of cobalt oxide prepared at different temperature. (#) CoO phase and
(þ) Co3O4 phase.
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decomposition of cyanide ligands is completed below 350 °C and
hence we have synthesized cobalt oxides by fixing the tempera-
ture at 400–650 °C in mixed Ar/O2 atmosphere. XRDs were re-
corded for the samples prepared from decomposition of Co3[Co
(CN)6]2 at different temperatures (Fig. 1). From the XRD results, it
is confirmed that pure Co3O4 (JCPDS no. 01–078–1969) was
formed at 650 °C (decomposition temperature) and this tem-
perature, the calculated crystalize size (using Scherrer equation)
value (d¼8.3 nm) of Co3O4 for 311 plane was higher than the value
obtained at 400 °C (d¼2.1 nm). This imply that The existence of
the CoO oxides (JCPDS no: 01–078–0431) phase at a lower tem-
perature may be due to the initial conversion of Co3[Co(CN)6]2
partly to cobalt metal and then to metal oxides, viz. CoO and
Co3O4. This mechanism is suggested because the cyanide ions can
act as a reducing agent during thermal decomposition [19]. The
two well defined sharp peaks at 574 and 663 cm�1 observed [20]
in FT-IR spectra (Fig. S1B) were confirmed as due to the Co3O4

formation.
Fig. 2. SEM image of cobalt oxide prepared at different temperatures. Inset figure (A) is
microwave synthesis.
2.3. Morphology and particle distribution

Decomposition of Co3[Co(CN)6]2, results in a significant change
in the mass of the sample. The possible decomposition products in
the mixed Ar/O2 atmosphere are H2O, CO2, (CN)2 and NxOy [20].
The release of these gaseous products could produce highly porous
metal oxide materials and these were confirmed by SEM images of
porous Co3O4 prepared at different temperatures (shown in Fig.2).
We can observe that porous structure in Co3O4 was retained ir-
respective of the temperature but the pore size has shown an in-
crease with temperature (Table ST1). It is clear from the SEM mi-
crographs that the particle size increases with increasing tem-
perature from 400 to 650 °C. This observation is attributed to the
aggregation of particles at elevated temperatures. As the tem-
perature increases, the small nanocrystals grow into an inter-
connected porous structure. Recently, a similar observation is
made by Chen et al., during Co3O4 formation on calcination of Co
(OH)2 [21]. The shape and particle size of the Co3O4 was analyzed
from TEM studies. Large void spaces present in Co3O4 can be
clearly seen from SEM image shown in Fig. 2A. It is interesting to
know that Co3[Co(CN)6]2 is active in the microwave region and
hence microwave irradiation can also be followed to decompose
Co3[Co(CN)6]2. Surprisingly, the microwave assisted synthesis also
resulted in the porous cobalt and also existence of cobalt oxide
(Fig. 2B) in two different phase's c.a. Co3O4 and CoO. Phase pure
Co3O4 can also be synthesized by optimizing the microwave power
and irradiation time. However, more studies are needed to opti-
mize the formation of phase pure Co3O4 by microwave heating.

2.4. Electrochemical studies against Liþ /Li0

We have also examined the electrochemical behavior of the
pure Co3O4 as an anode material for Lithium ion battery. Fig. 3A
shows the plot of specific capacity (mA h g�1) vs voltage (V vs
Liþ/Li0) obtained for the charge–discharge profiles of the first,
fifth and tenth cycles. Fabricated coin cells were cycled at a
rate of C/2 from 3.0 V to 0 V. Fig. 3B shows discharge capacity
versus cycle number for porous Co3O4 at C/2 rate. The discharge
capacity of the first cycle was found to be as high as 1131 mA h g�1
TEM image of Co3O4 obtained at 650 °C and (B) SEM image of Co3O4 obtained from



Fig. 3. (A) First, Fifth, Tenth discharge and charge cycle of porous Co3O4 at C/2 rate.
(B) Discharge capacity versus cycle number for porous Co3O4 at C/2 rate.
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(corresponding to x¼11.3). These are generally attributed to the
conversion of Co3O4 to an intermediate-phase CoO (or LixCo3O4)
and then to metallic Cobalt, respectively [1,7]. The sloping region
may be due to the formation of a solid electrolyte interface (SEI)
which leads to an irreversible capacity loss [4]. On charging, a
distinct plateau was seen at 1.95 V which corresponds to the for-
mation of a less lithiated phase (LinCo3O4, nox) with a delivering
capacity of 838 mA h g�1 (corresponding to x¼8.4) and 74% cou-
lombic efficiency. Irreversible capacity loss experienced in the first
cycle is due to the incomplete decomposition of Li2O and SEI for-
mation which is not followed in subsequent cycles [9].
3. Conclusions

Here, we have shown a facile route for the synthesis of porous
Co3O4 from prussian blue analog, Co3[Co(CN)6]2. This method for
the preparation of nanostructured phase pure metal oxide with
high porosity is simple. The formation of the pure Co3O4 phase
was optimized by varying the temperature between 400 °C and
650 °C. During the thermal decomposition of Co3[Co(CN)6]2, a
large change in mass and expulsion of gases take place resulting in
the formation of a porous cobalt oxide as evident from SEM and
TEM images. Co3O4 is a promising anode material in Li-ion battery.
This porous nano-structured material may help to increase the
battery performance by adjusting volume variation occurring
during the charge–discharge process. Further possibility of the
synthesis of mixed metal hexacynocobaltates with two or three
metal ions Ni2þ or Mn2þ with hexacyanocobaltate ions are ex-
pected to lead to the synthesis of newer mixed oxides which may
have promising application as advanced energy materials and is in
progress.
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