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Abstract. The catastrophic outbreak of the Novel Corona virus (Covid-19) has brought to
light, the significance of reliable predictive mathematical models. The results from such models
greatly affect the use of non-pharmaceutical intervention measures, management of medical
resources and understanding risk factors. This paper compares popular mathematical models
based on their predictive capabilities, practical validity, presumptions and drawbacks. The paper
focuses on popular techniques in use for the predictive modeling of the Covid-19 epidemic. The
paper covers the Gaussian Model, SIRD, SEIRD and the latest θ-SEIHRD techniques used for
predictive modeling of epidemics.

Keywords: Covid-19, Mathematical Modeling, Epidemic, Mechanistic State Space, Gaussian
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1. Introduction
For over a decade, Machine Learning(ML) and Artificial Intelligence(AI) have provided unique
solutions in the form of predictive modeling algorithms for complex social problems. These
include medical diagnosis, predictive maintenance, Finance and Banking. However, this is not
the case with Covid-19. The corona virus pandemic has been described as “the kryptonite
of modern Artificial intelligence”[1]. The forecasts of the spread of Coronavirus by AI are
neither accurate nor reliable[2]. The search for potential AI models has concluded that “very
few of the reviewed systems have operational maturity at this stage”[3]. The failure of AI can
be attributed to a range of factors, as demonstrated by [2]. Most prominent among them is
the lack of sufficient data to build forecasting models. This is not only because of the lack of
historical training data but also due to problems with big data, collected from unreliable sources
such as social media. This pitfall has been explicitly demonstrated in the fabled Google Flu
trends[4]. One of the first surveys on AI in accurately predicting the impact of Covid-19 has
aptly concluded that “AI systems are still at a preliminary stage, and it will take time before
the results of such AI measures are visible” [3]. The failure on the part of AI towards forecasting
led to the consideration of simple and traditional mathematical models.

Epidemiological models need to predict disease progress, identify potential causes of
transmission and suggest optimal intervention measures. The first successful modeling and
containment of epidemic was that of cholera which tormented London in 1854. A physician,
John Snow collected spatio-temporal data and visualized it on a map. He found transmission
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patterns which centered around the Broad Street water pump, the zero point of transmission.
The earliest publication addressing mathematical models in epidemiology dates back to 1766
by Daniel Bernoulli. It approximated death rate in London due to Chickenpox. However,
a more structured approach was created by W. O. Kermack and A. G. McKendrick in 1927
titled “A Contribution to Mathematical Theory of Epidemics”. This approach introduced
the use of deterministic compartmental models in epidemiology and acted as a cornerstone
for mathematical transmission models. In this context it is important to mention the work
of Enko, who in 1889 published a ground breaking probabilistic model in discrete time which
was used to analyze the measles epidemic. Enko’s work can be considered as a forerunner to
the renowned Reed-Frost chain binomial model introduced in 1928 at John Hopkins University.
This model is based on the assumption that the disease spreads by discrete time Markov chain
events.

Mathematical models for disease epidemic are either deterministic or stochastic, where the
first is considered as a thermodynamic limit of the other. Mathematical modeling of epidemics
broadly consists of three types, Statistical methods for epidemic surveillance, Mechanistic
State-Space model and Empirical Learning models. Mechanistic State-Space models have
outperformed the other two in describing respiratory diseases such as MERS and SARS.
Mechanistic State-Space Models are classified (see Figure 1) as “Continuum” models, “Markov
Chain” models, “Complex Network” models and “Agent Based Simulations”.

Figure 1. Classification of Mathematical Models in Epidemiology

The most significant functions of epidemic models are monitoring, forecasting major
outbreaks and detection of patterns, disease characteristics that might suggest suitable measures
for controlling the spread of disease. Mathematical simulations have allowed rapid situation
assessments for proper resource allocation. In situations where cost of testing restricts collection
of fresh data, mathematical simulations can be game changing. The Covid-19 pandemic
has exemplified the centrality of dynamic mathematical models in predicting and containing
outbreaks, response logistics and policy making on Non Pharmaceutical Intervention(NPI)
measures.
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2. Gaussian Models
Statistical Regression models detect dynamics of epidemic outbreak by monitoring the time-
series statistics of reported infected cases. One of the early works on this was published by
Serfling which was incepted to analyze the deaths caused by pneumonia and influenza. Gaussian
Model(GM) is one such statistical model that has outperformed its peers in reliably predicting
Covid-19 outbreaks. Gaussian models are based on the Central Limit theorem of Statistics [5],
where the proposition consists of multiple independent and random variables, their suitably
normalized sum tends towards a Gaussian distribution even if the original variables themselves
aren’t distributed normally.

In the Gaussian model, the bell shaped Gaussian function is fitted to existing data of
cumulative deaths or detected infections and extrapolate the numbers to future times. Although
Gaussian Model appears to be too simple and primitive, its applicability can be substantially
justified. Firstly, GM appears to be a special case of Continuum models as suggested by[6].
Secondly, GM is know to be compatible with an agent based epidemiological model as showcased
by[7].

A model was developed using Gaussian error function and Monte Carlo simulation[8] to
predict the outbreak of corona virus in Italy. Based upon distribution observed in study of
seasonal influenza[9], the cumulative numbers of detected cases and deaths in china were fitted
with a Gaussian error function containing four parameters (see Figure 2).The Gaussian function
used has been represented by Equation 1. Where erf represents Gaussian error function depicted
by Equation 2.

a+ b erf(cx+ d) (1)

erf(z) =
2√
Π

∫ z

0
e−t

2dt (2)

Figure 2. Gaussian Error Function fitted to cumulative number of deaths caused by COVID-19
in China (red dots) from January 22, 2020 [8]

The day of the Flex(i.e., the day the number of daily positive cases start decelerating) in Italy
is predicted to lie between March 23rd and March 27th. However it was actually observed on
3rd April,2020. Additionally, the day with substantial reduction in the number of daily positive
cases (decrease in number of new cases by more than 100) was predicted to lie between April
17th and April 27th. This substantial reduction was observed on 5th and 6th April,2020.

Similar model[10] was developed by IHME COVID-19 health services utilization forecasting
team. This model forecasts the impact of Covid-19 on hospital beds and demand for ventilators in
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the United States. Findings from this study have been crucial in developing lockdown strategies
and justifying the use of Non-Pharmaceutical Interventions.

Another model similar to IHME COVID-19 was developed to predict the spread of the virus
in Germany[11] and Europe[7]. It differs from the earlier mentioned work [8] by suggesting the
use of monitored doubling times to approximate the total duration of the first wave and the
point of time with peak deaths. This paper has concluded that higher order co-efficients tend
to fit noise better than the signal itself. Therefore, second order polynomial (GM) is used to fit
logarithmic daily deaths. Daily fatalities as a function of time denoted by d(t) and cumulative
deaths denoted by D(t). The Gaussian model used can be described by equations mentioned
below. Here,wd is the width of the Gaussian, dmax is the maximum value of deaths and t dmax
is the instant of time with maximum deaths. And c0, c1 and c2 are coefficients of polynomial
function of degree 2.

d(t) = dmax exp

{
(t− td,max)2

ω2
d

}
(3)

dm(t) =
dDm(t)

dt
(4)

ln (dm(t)) = ln

(
dmax −

(
t− td,max

ωd

)2
)

= c0 + c1t+ c2t
2 (5)

c0 = lndmax −
t2d,max
ω2
d

, c1 =
2td,max
ω2
d

, c2 =
1

ω2
d

(6)

The applicability of such model can be confirmed using a holistic agent model[12]. It is also
observed that the width of GM is within 10 and 15 days, and the peak in fatalities approximately
occurs below 20 deaths per million.

The GM for Germany[11] predicted the first wave of Covid-19 pandemic to reach its maximum

on April 11th+5.4days
−3.4days with 90% confidence. Predictions made on the time of maximum deaths

td(max), maximum deaths per day dmax and cumulative deaths at the time maximum deaths
Dtotal, for various European countries by [7], have been compared with values recorded by [13]
[14] (see Table 1).

The major drawbacks of mathematical models involving sigmoidal functions are: (i) their
tendency of over-fitting the data, (ii) high sensitivity to initial conditions and (iii) requiring large
number of parameters. However, sigmoidal functions have been acknowledged for automatically
accounting for exponential growth phase and the subsequent flattening phase that are observed
in epidemic curves. Most exponential models rely on doubling times, which demands extensive
pre-processing of the data. It is important to note that GM is able to accurately fit and
model data produced by agent-based approach, given that the degree of social distancing
remains unchanged. Gaussian models are so simple that comprehensive understanding of neither
statistics nor epidemiology is required for its implementation.

3. Continuum Models
State-Space models, have been used to infuse our mechanistic understanding of disease
transmission with a statistical framework by associating observed incidence disease dynamics
with underlying population disease burden and susceptibility. The field of study in mechanistic
modeling is described by a set of differential equations.These differential equations can be
discretized to give simpler difference equations.The differential equations symbolize the general



IOCER 2020
Journal of Physics: Conference Series 1797 (2021) 012009

IOP Publishing
doi:10.1088/1742-6596/1797/1/012009

5

Table 1. Comaparison between Predictions[7] and Observations[13]

Country td(max) dmax Dtotal Time of Max Deaths Max Deaths Total Death

Austria April 7 ± 21 21.6 ± 4.7 500 ± 170 April 8 30 273
Belgium April 14 ± 18 430 ± 26 10,200 ± 1100 April 10 496 3019
Switzerland April 5 ± 17 63 ± 12 1300 ± 300 April 4 75 666
China February 17 ± 3 95 ± 3 2600 ± 100 April 15 1290 17169
Germany April 12 ± 10 340 ± 6 7900 ± 400 April 15 510 3804
Spain April 1 ± 6 960 ± 70 17,500 ± 1600 June 19 1179 28315
France April 11 ± 8 980 ± 320 26,600 ± 9000 April 15 1438 17169
Greece March 27 ± 9 3.8 ± 1.3 47 ± 17 April 3 10 63
Indonesia March 19 ± 22 5.3 ± 4.7 111 ± 91 July 22 139 4459
Iran March 25 ± 2 150 ± 14 4100 ± 400 July 28 235 16147
Italy March 27 ± 1.8 832 ± 60 18,300 ± 1400 March 27 919 9134
Netherlands April 2 ± 4 144 ± 23 2500 ± 400 April 17 1290 4636
Portugal March 29 ± 4 24 ± 4 260 ± 40 April 3 37 246
Sweden April 15 ± 35 162 ± 12 3600 ± 600 April 21 185 1765

state space where as the difference equations define the various states. Owing to the uncertainty
related to measurement and process states, random abrupt peaks it is critical to remove
measurement noise and on-line estimation of the process states for the real-time deployment
of this mechanistic model.

Continuum models can describe the rough dynamics of the disease in the population.
Continuum models can project the severity of epidemics as a function of age distributions
or the evolution of disease transmission under Non-Pharmaceutical Interventions. The
classical SIR model divides the population into 3 groups: susceptible individuals(S), infected
individuals(I), and recovered individuals(R). Successive models SIRD, SEIRD also include dead
individuals(D) and exposed but asymptomatic individuals (E). The compartmental action-mass
model introduced by Kermack and McKendrick in 1922, can be considered as the basis of such
models. The idea behind Continuum model scan be summed up in following set of equations,

dPt(S)

dt
= −ps→1

∑
N(S)

Pt(S, I),
Pt(I)

dt
= −pI→RPt(I),

Pt(R)

dt
= −pI→RPt(I) (7)

dS

dt
= −αSI, dI

dt
= αSI − βI, dR

dt
= βI (8)

dS

dt
= −αSI + γR,

dI

dt
= αSI − βI, dR

dt
= βI − γR (9)

Equations 7 denote probabilities of population moving from one compartment to the
other.The symbols α and (1/β) denote average values of the probability of disease transmission
and the mean time period during which an infected person can spread the disease before
completely recovering respectively.

Interesting research [15] was carried out incorporating three variants of classical SIR model,
a time dependent SIR model, a discrete time time-dependent SIR model and a SIR model
considering undetected infected persons. Discrete time time-dependent model can be represented
as the following difference equations:

S(t+ 1)− S(t) =
−β(t)S(t)X(t)

n
(10)
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Table 2. List of Notations Used

Notation Description

β Disease transmission rate(stationary)
β(t) Disease transmission rate as function of time
β1 Disease transmission rate of detectable cases
β2 Disease transmission rate of undetectable cases
γ Rate of recovery(stationary)
γ(t) Rate of recovery as function of time
γ1 Rate of recovery for detectable cases
γ2 Rate of recovery for undetectable cases
n The total population
R0 The basic reproduction number
R0(t) The basic reproduction number as function of

time
R(t) Number of recovered persons at time t
S(t) Number of susceptible persons at time t
ω1 Probability that an infected person is detectable
ω2 Probability that an infected person is unde-

tectable
X(t) Number of infected person at time t

X(t+ 1)−X(t) =
β(t)S(t)X(t)

n
− γ(t)X(t) (11)

R(t+ 1)−R(t) = γ(t)X(t) (12)

According to reports from WHO[16], only 87.9% of Covid-19 patients have fever and only
about 67.7% of them develop dry cough. Other studies[17][18] on the characteristics of the virus
have also given similar conclusions. Therefore, it is essential to consider undetected infected
persons while developing mathematical models. The SIR model designed to consider undetected
infected persons with w1 being probability of detectable cases and w2 being probability of
undetectable cases. See Table 2 for complete list of notations used in Equations 10-16.

w1 + w2 = 1 (13)

X1(t+ 1)−X1(t) = β1X1(t)ω1 + β2X2(t)ω1 − γ1X1(t) (14)

X2(t+ 1)−X2(t) = β1X1(t)ω2 + β2X2(t)ω2 − γ2X2(t) (15)

R(t+ 1)−R(t) = γ1X1(t) + γ2X2(t) (16)

A study[6] similar in nature carried out employing a slightly modified SIR model has yielded
accurate predictions with an errors less than 3% (see Table 3). Since Gaussian evolution observed
from China-driven Gaussian model, a standard SIR model was developed additionally which has
derived similar dependence. The Gaussian function used is mentioned below.Here,α and µ are
infection and recovery rates respectively. While β and γ are respective constants such that they
satisfy equation.

I(t) = Ice
−
αβ

2
+(αγ−µ)t

(17)
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Table 3. Total number of cases reported of april 4 [6]
Country Reported

cases
Predicted cases Error(%) Predicted

peak date
Horizon (4σ) Total cases

Greece 1673 1621 3.0 04/03 05/18 2811
Netherlands 16,627 16,862 1.4 03/31 05/05 23,713
Germany 91,622 90,460 1.3 04/02 05/08 140,003
Italy 124,632 129,180 3.6 03/26 05/08 156,975
Spain 124,736 129,628 3.9 03/31 05/02 173,535
France 68,605 69,330 1.1 04/05 05/21 141,973
UK 41,903 42,888 2.4 04/12 05/26 165,443
USA 312,273 315,677 1.1 04/05 05/10 654,207

Intuitive research [19] was conducted based on deaths reported in New York city, Madrid
and Stockholm to estimate standard epidemiological model of Covid-19. A simple SIRD Model
was developed to include parameters for representing social distancing. Seven-day simulations
of the spread in various cities across the globe was considered. It is important to note that the
model fits appropriately to the mortality rates between 0.5% and 1.2% and thus emphasizes the
uncertainty about this number. Relative to classical time varying SIRD, this model has included
time-varying β, and therefore time-varying Ro to fit the death data.

Additionally, another research[20] carried out reflected a comparative analysis of SIRD and
SEIRD models. The study observed that there was no difference about the accuracy of the fit to
data, and both models yielded very close values for epidemiological parameters. However, the
average time taken for an infected person to die was slightly lower on SIERD model. The SEIRD
models indicates slower growth rate, which can be attributed to the incubation period included
in its design. When it comes to predicting the impact of the epidemic with age distributions,
SEIRD model offers more precision. But even with better predictions, the proposed SEIRD
model is far more complicated than the SIRD model and the use of the latter should not
compromise data analysis. The paper concludes that the age division does not alter predictions
drastically, implying that in the case of simple predictions or analysis, SIRD models are useful.

During the early days of the epidemic, it was observed that the primary agents in spreading
the virus from its epicenter in Wuhan to other cities were passengers who traveled by air. To
estimate the number of infected cases exported out of Wuhan to other parts of Mainland China
as well as cities across the world, an alternate study[21] was rolled out comprising a novel SEIR
model. Here, global and domestic air travel data was analyzed to map the spread of the virus.
Using this information, the study predicted the potential risks of spread in all major cities of
mainland China.

Taking into account, the known special characteristics of this virus, the existence of infected
undetected cases[22], a novel θ-SEIHRD model[23] was developed to consider the fraction θ of
undetected cases over the real number of total infected cases, which allows the examination of
this ratio’s impact on the epidemic. In this paper, both deterministic and stochastic versions
of the model were proposed. However, the deterministic model was used considering various
advantages that it offered over the later. Advantages such as (a) low computational complexity
allowing for finer tuning of the model parameters or (b) possibility of using simpler ordinary
differential equations for suitable analysis have made the deterministic model more viable. This
study has concluded that about 52% of infected persons are undetected. This is in close proximity
of other medical studies[24][25] which suggest between 40%-50%.
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4. Non-Pharmaceutical Interventions
Non-Pharmaceutical Interventions(NPI) can be defined as measures(apart from vaccination and
use of pharmaceutical drugs) that can be taken by people and communities to help slow the
spread of diseases like influenza and Covid-19. These measures are also referred to as community
mitigation strategies. NPIs can be broadly classified into four groups (a) Communication for
behavioral impact, (b) Personal protective measures (for example, hand hygiene and face masks),
(c) Environmental measures (for example, modifying humidity and increased ventilation), (d)
Social Distancing measures and (d) travel related measures. Studies[26][27] have revealed
confirmatory evidence of efficacy and overall effectiveness in an influenza pandemic. The
flattening of curve is crucial because a more gradual uptick of the number of cases will over-
burden the healthcare systems (see Figure 3). The rationale behind ”flattening the curve” is
that the use of appropriate social intervention measures would stagger the growth in number of
new cases over a long period of time. This would reduce the number of active cases at the peak
of the epidemic and reduce pressure on public infrastructure. Resulting in increased access to
the limited medical resources.

Figure 3. ”Flatten the Curve”

Imperial College Covid-19 Response [28] has published the conclusions of epidemiological
modeling which has influenced policy making in the UK and other western countries.
Microsimulaition model was applied to Great Britain and the USA. Five scenarios of NPIs
are discussed and their potential in mitigating the virus are depicted. The expected demand
of ICU beds and total deaths were also projected against the time period for which these NPIs
would be in effect. The results of this simulation signify the importance of non-pharmaceutical
intervention measure. It concludes that relatively short term (three month) mitigation policy
might reduce deaths by half and peak demand on health care infrastructure by two-thirds.

Effectiveness of social distancing and intervention measures have been highlighted by a
recent study [29] that examines data from early exponential growth period of the epidemic.
Here, a Bayesian inference based on Markov chain Mote Carlo sampling is applied to a class
of compartmental SIR model. Important parameters in this model are the spreading rate λ,
recovery rate µ and reporting delay (D)(Equation 18).Here Ro is the basic reproduction number.

Ro = λ/µ (18)
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Three major change points in the spread rate were assigned with respect to three governmental
intervention measures, (i) ban on large events and gatherings of more than 1000 people, (ii) the
closing down of schools, child care centers and departmental stores (iii) complete contact ban
and closing of all non-essential businesses. This study has credited the first two intervention
measures for substantial reduction in the growth rate λ from 30% to 12% and down to 2%
respectively.

On May 8th 2020, UK government announced its plans towards a complete lock down. In
this context, research[30] on the effects of lockdown had it been implemented one week earlier
or one week later was undertaken. A two layered Gaussian process where upper layer uses a
compartmental SEIR model as a prior mean function with country and policy specific parameters
and lower layer parameters are shared across all countries. This study has concluded that had
the lockdown been implemented one week earlier would have saved 13,827 lives. 22,405 more
deaths would have occurred if it had been implemented one week later. Also under the current
plans of the UK government to re-open the daily deaths would stabilize around 200. However
if the lockdown was maintained it would lead to the daily deaths falling under 100 in August,
which would save an additional 6,215 lives. Integrating epidemic models with health-care and
economic models can provide a holistic framework that may assist predicting the social impacts
of various policy decisions.

5. Conclusions
According to mathematical modelers, a good mathematical model reflects the data it uses. The
major hurdle currently faced by Mathematical models is the lack of noiseless undelayed consistent
data. The adulteration of data appears to be occurring primarily due to the variations in
guidelines to register cases and the uncertainty of the symptoms of Covid-19. The Continuum
(SIR) family of models seems to be rapidly growing with ever-increasing considerations and
variables, subsequently increasing the complexity of differential equations involved. Challenges
faced by mathematical modelers is summarized into:
(a)Pathogen evolution: Similar to most flu virus, Covid-19 has also undergone mutations,
which disrupts the design of models and dynamically changes parameters.
(b)Statistical uncertainties: The impact of the epidemic in a particular region depends on
unknown factors such as the underlying immunity of the general population. Such factors greatly
experience temporal and spatial variations. Statistical techniques that extract parameters that
describe the properties and transmission characteristics of the disease from incomplete and noisy
surveillance data are yet to be developed.
(c)Contact patterns: Laws such as “mass action” are based on the assumption that infectious
contacts between persons are purely random in nature. However, if the interaction between
individuals is not random, it would result in localized saturation of infection and undermine these
laws. Such mixing would cause complex epidemics that cannot be predicted using traditional
modeling techniques.

”One model fits to all” is not applicable to devise a Mathematical model in epidemiology.
The nature of the problem assists in identifying the suitable model. The key factor is not to
cite which model is accurate but to identify the model that caters to the requirement and in
addressing the problem. The models discussed in this paper cater to different requirements.
Few models predict the number deaths accurately whereas few are good at describing the
disease attributes while others are designed to explore and measure the effects of measures
of intervention.
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