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Lung cancer remains one of the deadliest diseases in the world and early detection is critical to 
enhancing survival rates. With traditional diagnostic techniques - CT scans and chest X-rays - an 
invasive procedure must be performed and, in some cases, it relies on expert interpretation. Whether 
benign or malignant, the similarities in visual characteristics of nodules leads to ambiguity and makes 
for a difficult case which calls for the development of automatic lung cancer classification framework 
such as the one we proposed, which incorporates Deep Learning (DL) methods and uses a rigourous 
training methodology on top of that. Our framework pre-processes the images with adaptive filters to 
eliminate noise, segments lesions, removes, and refines features with Hybrid Horse Herd Optimization 
(HHO) and Lion Optimization Algorithm (LOA). Those features are classified with a hybrid Deep 
Convolutional Neural Network and Long Short-Term Memory (DCNN + LSTM) model, which jointly 
enhances features extraction and temporal learning. We run data learning against standard lung CT 
datasets and achieved a score of 98.75% accuracy, demonstrating the proposed system is effective 
in classifying normal lung tissue from abnormal. Nonetheless, the real-time usability of the system 
is limited by the performance of the CT, and the computational demands of the model, which can be 
troublesome for clinical situations that typically possess less computational power. Furthermore, these 
limitations never the less provide a more intelligent, accurate diagnostic aid for radiologists that non-
invasively assists in clinical decision making and, importantly, earlier cancer diagnoses.
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One of the most destructive diseases worldwide, lung cancers, early detection enhances survival rates1. Benign 
or malignant can be cells classified as. Inspired or non-cancers are benign cells, while cancers or malignant 
cells, proliferate in the lungs. Detecting these malignant cells early is vital for the body to mount a successful 
defence. However, differentiating between benign and malignant nodules is challenging, as they often share 
similar characteristics, though differences may exist in their location, shape, and structure. Early and accurate 
identification of these differences is crucial2,3. This challenge is tackled using several diagnostic techniques, CT 
and Magnetic Resonance Imaging (MRI). Of these, CT and chest X-ray radiography are especially important 
to early cancer detection because of their capacity to represent different types of cancerous tissues through 
anatomical imaging. Other imaging modalities cannot match the efficacy of CT for evaluating lung diseases. 
However, most physicians currently treat aggressive and nonaggressive cancer cell types by relying on intrusive 
techniques4. However, these techniques are not enough to distinguish malignant from benign cancers which 
have certain common features.

Lung cancer is usually diagnosed using imaging modalities such as chest X-ray, Computed Tomography 
(CT) and Magnetic Resonance Imaging (MRI). CT scans are considered the most effective imaging modality 
as they provide higher anatomical resolution images compared to X-ray and will readily allow identification of 
lung nodules. Unless the imaging results are clear-cut, conventional medical imaging ultimately relies on the 
judgement of a radiologist to interpret the images, which has inherent bias from interpretation subjectivity and 
subsequent interpretation errors. The challenge in distinguishing benign versus malignant lung nodules when 
using CT or X-ray is that they are often morphologically similar. In many cases, the physician will need to rely 
on invasive procedures, such as biopsy, to determine if the nodule is malignant, which can involve time delays for 
scheduling, cost of the procedure, assessments for appropriate site anesthetic, and have the potential of increased 
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risk to patient. Furthermore, while MRI is somewhat useful for assessment of soft tissues, it is not sensitive 
for small pulmonary nodules versus CT5. As it stands, these modalities represent the considerable potential 
shortcomings of conventional medical imaging, which are not automated or accurate enough to allow for early 
detection of lung cancer and diagnosis, especially in large population screenings.

However, Machine Learning has been used to tackle this challenge and Support Vector Machines (SVMs) are 
used specifically to differentiate between benign and malignant nodules6. SVMs however need manual feature 
extraction which makes them less able to achieve the optimal result. One such subset of ML, Deep Learning 
(DL), which mimics the neural functions of the human brain has shown much progress in medical image 
detection, classification, and analysis7,8. This optimized the nanorods and greatly improved various medical 
applications9,10. DL is especially useful when integrated into Computer Aided Diagnosis (CAD) systems since 
it can learn critical features in the course of training that will enable better end to end disease detection. In 
particular, DL is very successful in detecting different forms of cancerous nodules in CT scans. Furthermore, DL 
works in the same way as the neurons in human brain and the latest developments in the field of DL, a subset 
of ML, makes great improvement to recognize and classify medical images for use in health care11. Over the last 
few years, among many different medical applications, the rapid DL development pushes the advancement12. 
Therefore, DL is critical in CAD systems to learn important features during training to make disease detection 
better from beginning to end. In particular, DL techniques13–15 prove to be very good at detecting different 
cancerous modules on different CT scans. Detecting and classifying lung cancer from CT images has been 
mostly done using Convolutional Neural Networks (CNNs) in the DL domain. CNNs16–19 can automatically or 
locally learn features of an image itself. These are adjusted weight and bias neurons in a network, whose value of 
weights and biases is trained.

There are considerable challenges in providing high quality services at low costs for healthcare organizations 
such as hospitals and medical centers. Accurate diagnosis and treatment of cancer patients is what high-quality 
means. Segmentation and feature extraction is then applied to lung scan images removing irrelevant information 
and enabling analysis. In this paper we propose a system that uses historical lung cancer databases to uncover 
hidden insights and uncover patterns and relationships associated with lung diseases. Additionally, it also is able to 
answer queries about possible lung cancer diagnosis, which makes it a useful resource for clinicians as they make 
clinical decisions regarding their patients. Our framework presents a hybrid optimization method that combines 
Horse Herd Optimization (HHO) and Lion Optimization Algorithm (LOA). The balance of HHO and LOA 
strikes a powerful balance between global search and local optimization that improves both feature extraction 
and hyperparameter tuning efficiency. Our framework provides a response to the limitations of traditional 
optimizers that are not in combination, and leads to improved classification performance as evidenced by our 
results. The HHO-LOA optimization method is used in this study to boost the performance of the DCNN-
LSTM classifier that classifies images with cancerous or noncancerous conditions. Since the optimizer tracks 
the accuracy for us, we can now take advantage of it to find the optimal parameters in training the lung cancer 
recognition model. The DCNN model extracts pathological features, and refines feature dimensions and helps to 
alleviate the underfitting issues caused by dataset limitation. In order to provide a more complete evaluation of 
the proposed model, we further assess its performances, using ROC and precision-recall curves, and AUC values 
and 95% confidence intervals, which allow for an indepth evaluation against comparison models.

Organization of the paper: Part 2 reviews the existing methodologies, Part 3 explains the functionality of the 
Lung Cancer Classification (LCC) system, Part 4 presents the simulation results and their discussion, and Part 
5 concludes the paper.

Related works
Pu et al.20 investigated an in-depth analysis of the competing endogenous RNA (ceRNA) regulatory network 
of tuberculosis, emphasizing circRNA–miRNA–mRNA interactions. The authors successfully built a genome-
scale ceRNA network from high-throughput sequencing profiles and sophisticated bioinformatics analysis to 
detect the key regulatory components. Authors’ study validated differentially expressed RNAs as candidate 
biomarkers, emphasizing their diagnostic significance. ceRNA network revealed molecular processes controlling 
tuberculosis disease progression and an RNA-based diagnostic tool generation system. The model was efficient 
in the detection of functional RNA regulators with very high statistical significance (p < 0.05) and high sensitivity 
towards target RNA prediction.

Wang et al.21 investigated combination therapy of fluorofenidone and cisplatin against non-small cell lung 
cancer (NSCLC). The study revealed that fluorofenidone significantly enhanced the cytotoxicity of cisplatin with 
greater apoptosis and tumor inhibition than cisplatin. With in vitro and in vivo tests, the combined treatment 
proved to be more effective in tumor inhibition, where the fluorofenidone + cisplatin treatment groups expressed 
greater than 65% inhibition of tumors than in the cisplatin monotherapy. The results robustly support the 
clinical efficacy of the combination strategy, specifically bypassing cisplatin resistance and better NSCLC patient 
prognosis.

Cao et al.22 performed a broad pan-cancer analysis to investigate the prognostic and immunomodulatory 
function of ENC1 (Ectodermal Neoplasm 1). The results revealed that ENC1 expression was markedly related to 
various types of cancer and highly correlated with tumor microenvironment (TME) reconstruction and immune 
cell infiltration. According to TCGA and GTEx datasets, the authors demonstrated that a statistically significant 
association between high ENC1 expression and poor survival in lung, colon, and liver cancer was present. 
The model had prognostic AUC greater than 0.82 in various cancer cohorts. ENC1 emerged as a legitimate 
therapeutic target and a potential prognostic biomarker of sensitivity to immunotherapy in various cancers 
according to their research.

Bilal et al.23 also explored the potential integration of quantum computing principles and Extreme Learning 
Machines (ELMs) for early detection of various types of cancer. Quantum-inspired ELM algorithm by authors 
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revealed significant improvement in classification accuracy along with reduced computation costs. The suggested 
method showed a detection rate of 96.7% with varying sets of cancers with highly optimized training time 
compared to traditional machine learning algorithms, making it justifiable to be used for early cancer detection 
in oncology.

Bilal et al.24 introduced an Improved Gray Wolf Optimization (IGWO)-based lung nodule detector with 
the assistance of InceptionNet-V3. IGWO tuned CNN filters to lead to improved feature extraction. It attained 
95.8% accuracy, 94.6% specificity, and 96.3% sensitivity and surpassed baseline classifiers and traditional CNNs 
in false positive reduction for lung cancer diagnosis and demonstrating clinical utility in radiology.

Kanavati et al.25 used weakly-supervised DL to classify lung carcinoma using sparse annotated data. Using 
CNNs and weak labels, the algorithm achieved a mean classification rate of 94.2%, showing that effective learning 
was achievable from sparse label information. The approach significantly reduces the need for big annotated sets 
and offers a scalable approach for application in real clinical applications.

Asuntha et al.26 introduced DL models, i.e., CNNs, for the detection and classification of lung cancer from 
medical images. Their models discriminated between lung cancer cases with 92.3-94.5% accuracy on various 
sets of CT scan datasets. They also resolved problems such as class imbalance and limited data annotation by 
using data augmentation and transfer learning techniques that improved model generalization in medical use.

Chaturvedi et al.27 compared a few machine learning models such as SVM, Decision Trees, and Random 
Forests to classify lung cancer based on clinical features and image-derived features. Out of them, the Random 
Forest classifier performed best, which attained 93.1% accuracy and an area under the curve of 0.89. Their study 
attested to the application of conventional ML methods in explainable medical data analysis that opens doors for 
decision-support systems for oncology.

Nageswaran et al.28 proposed a hybrid approach using image processing to extract features and machine 
learning to classify in lung cancer prediction. Although the authors initially published 92.8% accuracy and 90.5% 
recall, the article was subsequently retracted on data integrity concerns, making the presented performance 
measures unsuitable for scientific purposes.

Mohamed et al.29 proposed a DL model with CNNs and RNNs integrated with multi-omics data (genomic, 
transcriptomic, and clinical data) to enable precise classification of lung cancer. Their model showed improved 
predictability with 97.6% accuracy, 0.95 AUC, and 96.9% F1-score and proved the importance of combining 
heterogeneous biomedical data towards increased predictive power and personalized medicine.

The Horse Herd Optimization with Lion Optimization Algorithm HHO-LOA addresses the limitations in 
previous works by optimizing the LSTM classifier for lung cancer image classification. It enhances the training 
process by selecting the best parameters, reducing underfitting, and improving classification accuracy. The 
DCNN also extracts pathological features more effectively, mitigating issues like feature redundancy and 
nonexistent patterns. This combined approach ensures robust and accurate detection of lung cancer across 
diverse datasets, overcoming scalability, feature extraction, and generalization challenges seen in earlier studies. 
Table 1 shows the comparison table on lung cancer classification existing research.

Proposed methodology
Classifying lung cancer is essential for assessing the disease and determining appropriate treatment decisions 
based on its types. DL, a subfield of ML, has recently demonstrated exceptional performance, particularly 
in classification and segmentation tasks for CT image analysis. However, selecting suitable parameters and 
preprocessing methods is challenging in promoting classifier performance. A Hybrid Optimized DNN 
(HODNN) approach for optimal FS and accurate classification is presented. It consists of hybrid techniques for 
FS and variety. The common workflow of the suggested approach is shown in Fig. 1.

Figure 1 illustrates the complete workflow of the LCC approach, encompassing four phases: pre-processing, 
segmentation, DCNN based feature extraction, and classification as a novel contribution to the parameter tuning 
using a hybrid algorithm called a HHO with LOA. Parameter optimization is performed for the LSTM classifier 
to improve model performance significantly.

References Technique used Model Key contributions Dataset/validation Advantages

Ashhar et al.30 DL (CNN) Various CNN 
Architectures

Compared multiple CNN architectures for 
classifying lung cancer from CT scans.

CT images of lung cancer 
patients

Helped identify the best-performing 
CNN, improving model selection 
for lung image classification.

Pandit et al.31

Deep Neural 
Network 
(DNN) with 
Optimization

DNN with Enhanced 
Optimization

Introduced novel optimization functions to improve 
classification accuracy of DNNs.

Lung cancer dataset 
(unspecified)

Achieved higher accuracy and 
convergence speed through 
optimization enhancements.

Chaunzwa et 
al.32 DL (CNN)

CNN for 
Histological 
Classification

Used DL to classify histological subtypes of lung 
cancer using CT images.

Histology-based CT 
images

Enabled non-invasive histological 
classification with good accuracy.

Khan and 
Ansari33 CNN Custom CNN

Built a CNN-based classifier for detecting lung 
cancer from CT images with strong preprocessing 
techniques.

CT scan dataset of lung 
cancer

Offered a lightweight and efficient 
model with reduced training time 
and preprocessing accuracy.

Pfeffer and 
Ling34

Evolutionary 
Optimization of 
CNN

Evolving Optimized 
CNN

Developed an evolving CNN that dynamically 
adjusts parameters for lung cancer classification.

Lung cancer dataset 
(unspecified)

Improved model adaptability and 
classification performance with 
automated optimization.

Table 1.  Comparison on lung cancer classification existing research.
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We opted for a one-slice DCNN model rather than 3D CNN or volumetric transformer models primarily due 
to limitations in computational resources and pragmatic concerns regarding clinical implementation. Although 
3D models can learn spatial continuity across slices, they are significantly more computationally costly in terms 
of GPU memory needs and expense and are not viable to be implemented in resource-constrained clinical 
environments. Additionally, excessive inter-slice variation in CT volumes and non-uniform slice thickness 
between cohorts add noise to 3D modeling. Our method leverages optimally chosen, diagnostically meaningful 
axial slices with optimized feature enhancement using hybrid HHO-LOA optimization to facilitate effective 
nodule-level classification without sacrificing computational efficiency. We do acknowledge volumetric and 
transformer-based models’ potential and share them as future works upon the resolution of computational and 
annotation hurdles.

 Data sources
Dataset link: ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​h​​g​u​n​​r​a​j​​/​c​a​n​​c​​e​r​​-​n​e​t​​-​p​c​a​-​d​a​t​a.

This study used the SPIE-AAPM-NCI Lung CT Challenge dataset, which is free to the public and contains 
chest CTs with lung nodule annotations by expert radiologists. The dataset contains volumetric CT images of 
patients with suspected or confirmed lung cancer that are annotated with nodule boundaries and malignancy 
labels. For the purposes of our classification task, we limited our analysis to nodules that had well-defined labels—
i.e. nodules which had been determined to be either benign or malignant by the experts using histopathological 
and radiological criteria. We have performed additional curation of the publicly available dataset in order to 
trim out samples with private and unknown lesions. The images were processed and denoised using adaptive 
denoising filters. The images were then resampled and normalized. The relevant axial slices of the CT scans 
that centered on the nodule area were extracted and cropped to 224 × 224 pixels. After the preparation stage, 
we sampled our dataset into 70% training split, and 15% for both testing and validation splits ensuring that we 
kept a representative sample of benign and malignant across our splits. Furthermore, we used standard data 
augmentation techniques, such as rotation, flipping, and contrast adjustments, to help with generalization and 
improve overfitting. In this method, 80% of the nodes are randomly chosen for the training dataset, and the 
remaining 20% are reserved for the test dataset (Fig. 2).

Fig. 1.  Common work flow of LCC approach.
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Pre-processing
The lung cancer CT image dataset includes both benign and malignant sections for classification. These images 
undergo preprocessing, where adaptive noise removal filter techniques are applied. Adaptive filtering is designed 
to improve image contrast while enhancing overall image quality. This technique eliminates noise by suppressing 
low or high-frequency pixels and highlighting or detecting image edges. As a non-linear filter, adaptive filtering 
effectively removes noise from lung images by replacing noisy pixels with the median value of surrounding 
pixels, sorted based on the grey level of the image. InMF  is given based on Eq. (1) when the adaptive filter is 
implemented for the input image InHE .

	 InMF (a, b) = med {InHE (a − x, b − y) u, x ∈ H}� (1)

In Eq. (1), the original and the adaptive filtered image are denoted as InHE  and InMF , respectively. Moreover, 
an a2-dimensional mask is indicated by H. Therefore, the final preprocessed image is represented as InMF  and 
further subjected to lung segmentation.

Figure 3 illustrates the original and preprocessed image results. It shows the original lung scan image, noise-
filtered image result, and edge-detected image result. The preprocessed images are utilized to detect lung cancer.

 Lesion segmentation
Adaptive dual-thresholding is utilized for segmentation. Empirically determined intensity thresholds in the 
range of [90–140 HU] are utilized for segmentation of pixel intensities for detecting possible lesions. These 
values are soft tissue radiodensity features on a vast array of CT scanners and were tuned to identify nodule edges 
without over-segmentation. The method is adequate on a wide range of scanner types owing to two reasons: 
Histogram equalization normalizes intensity distribution prior to segmentation. Threshold calibration was done 
using validation images acquired from various sources of CT machines to ensure generalizability.

Fig. 3.  Preprocessed image results.

 

Fig. 2.  (a) Dataset splitting (b) sample lung CT scan image.
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While there are more sophisticated techniques available, adaptive thresholding is computationally inexpensive 
and precise enough for preliminary lesion boundary localization in our pipeline. Later DCNN layers continue to 
refine feature learning. Pixel grouping via thresholding:

	 fseg = fbinary ⊗ f � (2)

The Eq.  (8) is representing the colored segmented image (fseg). It segments the regions by numerous the 
fbinaryobtained using the grouping method by matching f .

Figure 4 demonstrates segmentation results for different pixel intensity ranges (50–200), showing how lesion 
regions are effectively separated from normal lung tissue. The segmented images serve as input for feature 
extraction and lesion classification models, aiding in lung cancer detection. This pixel thresholding-based 
segmentation technique ensures accurate lesion isolation, providing a crucial foundation for further diagnostic 
analysis.

DCNN extracted CT scan image feature-based HHO-LOA optimized LSTM model for lung 
cancer classification
Deep Convolutional Neural Networks (DCNNs) have been applied extremely extensively in lung cancer 
classification because of their strong capacity to learn automatically spatial feature hierarchies from medical 
images like CT scans.DCNNs use stacks of convolutional filters to extract informative features such as nodules, 
textures, and patterns that signify cancer. The features are then fed through pooling and fully connected layers 
for ultimate classification. DCNNs outclass traditional methods by reducing hand feature engineering and 
improving diagnostic accuracy35.

Hyperparameter tuning is a crucial step in optimizing DL models. In this case, we focus on using the HH-
LOA to fine-tune the hyperparameters of an LSTM classifier for classifying lung cancer CT scan images. The 
workflow consists of two primary stages such as Feature Extraction phase and using DCNN and Hyperparameter 
Tuning phase using HHO-LOA. The phase 1 uses A DCNN extracts discriminative features from CT scan images 
of lungs. The extracted features are passed to an LSTM classifier for final classification. The phase 2 perform 
parameter tuning, it optimizes key hyperparameters of the LSTM model, such as Number of LSTM units ( Hu), 
Learning rate ( η ), Batch size ( Bs​), Dropout rate ( Dr), and Weight decay ( λ ). The optimization process aims 
to improve the classification accuracy while reducing computational complexity.

DCNN extracted CT scan image feature-based HHO-LOA optimized LSTM model for lung 
cancer classification
Deep Convolutional Neural Networks (DCNNs) have been applied extremely extensively in lung cancer 
classification because of their strong capacity to learn automatically spatial feature hierarchies from medical 
images like CT scans. DCNNs use stacks of convolutional filters to extract informative features such as nodules, 
textures, and patterns that signify cancer. The features are then fed through pooling and fully connected layers 
for ultimate classification. DCNNs outclass traditional methods by reducing hand feature engineering and 
improving diagnostic accuracy35.

Hyperparameter tuning is a crucial step in optimizing DL models. In this case, we focus on using the HH-
LOA to fine-tune the hyperparameters of an LSTM classifier for classifying lung cancer CT scan images. The 
workflow consists of two primary stages such as Feature Extraction phase and using DCNN and Hyperparameter 
Tuning phase using HHO-LOA. The phase 1 uses A DCNN extracts discriminative features from CT scan images 
of lungs. The extracted features are passed to an LSTM classifier for final classification. The phase 2 perform 
parameter tuning, it optimizes key hyperparameters of the LSTM model, such as Number of LSTM units ( Hu), 

Fig. 4.  Segmentation result for different pixel ranges (50–200).
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Learning rate ( η ), Batch size ( Bs​), Dropout rate ( Dr), and Weight decay ( λ ). The optimization process aims 
to improve the classification accuracy while reducing computational complexity.

Deep convolutional neural network (DCNN) for feature extraction
The DCNN is essential for processing CT scan images and extracting meaningful features for lung cancer 
classification. It employs convolution operations to identify crucial patterns such as edges, textures, and 
structural details within the images.

	 Fl = σ (Wl ∗ X + bl)� (3)

The representation of feature map at layer l is given in Eq. (3). The variables Wl​ denotes convolutional kernel, 
X  is the input image or the feature map from the previous layer, and bl​ ​ is the bias term. The notation σ  (·) 
is activation function, typically ReLU, introduces non-linearity to enhance feature extraction. Pooling layers 
are applied to refine the extracted features and reduce the spatial dimensions. These layers perform either max 
pooling or average pooling. Pooling layers helps to reduce spatial dimensions.

	 Pl = max (Fl)� (4)

	
Pl = 1

N

N∑
i=1

Fl� (5)

The variable Pl ​ used to perform max pooling or average pooling at layer l using Eq. (4) and Eq. (5) respectively. 
Pooling helps retain the most important features while reducing computational complexity and preventing 
overfitting. Once the DCNN extracts the significant features, they are passed to an LSTM classifier, which utilizes 
sequential dependencies in the data to perform the final classification of lung cancer images. Table 2 shows the 
DCNN architecture overview.

The suggested DCNN model is very effective in spatial feature extraction of CT nodules because it is based on 
convolutional structure with layers, which detects low- to high-level patterns at various resolutions. Utilization 
of small kernel sizes and padding maintains the fine spatial detail, and dimension-reduction pooling layers 
preserve useful region-based information. This enables the network to well localize and differentiate between 
malignant and benign nodules based on shape, texture, and boundary changes.

 Long short-term memory (LSTM) classifier
The LSTM classifier has special features to handle the CT image features. The CNN-extracted features form 
a sequential pattern, which LSTM effectively learns. LSTM retains important features across multiple steps, 
ensuring relevant patterns influence the classification decision. Unlike standard RNNs, LSTM’s gating 
mechanisms prevent information loss over long sequences36. Table 3 shows the LSTM Head Overview.

The incorporation of the LSTM head reinforces the model to learn long-distance dependencies by holding 
sequential information constant across spatially separated features obtained by the DCNN. Temporal memory 
facilitates the model in learning contextual associations between nodule features, enhancing classification 

Layer no. Layer type Units Input size Output shape Parameters

1 LSTM 256 512 (Batch, 256) 787,456

2 Dropout – – (Batch, 256) 0

3 Dense (FC) 1 256 (Batch, 1) 257

4 Sigmoid – – (Batch, 1) 0

Table 3.  LSTM head Overview. Total LSTM head parameters: ~787.7 K.

 

Layer no. Layer type Kernel size Stride Padding Output shape Parameters

1 Conv3D 3 × 3 × 3 1 1 64 × 64 × 64 × 16 1312

2 BatchNorm3D – – – 64 × 64 × 64 × 16 32

3 ReLU – – – 64 × 64 × 64 × 16 0

4 MaxPooling3D 2 × 2 × 2 2 0 32 × 32 × 32 × 16 0

5 Conv3D 3 × 3 × 3 1 1 32 × 32 × 32 × 32 13,856

6 BatchNorm3D – – – 32 × 32 × 32 × 32 64

7 ReLU – – – 32 × 32 × 32 × 32 0

8 MaxPooling3D 2 × 2 × 2 2 0 16 × 16 × 16 × 32 0

9 Flatten – – – 131,072 0

10 Dense (FC) – – – 512 67,109,888

Table 2.  DCNN architecture overview. Total DCNN parameters: ~67.1 million.
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accuracy. It can seize decision patterns over multiple areas within the CT volume, which even normal CNNs 
may fail to capture.

The extracted features Xt at time t are sequentially processed using LSTM units, which learn temporal 
dependencies. LSTM units that update their states using gating mechanisms.

	 ft = σ (Wf · [ht−1, Xt] + bf )� (6)

Forget gate operation is represented as in Eq. (6). It determines which information from the previous cell state 
should be retained or discarded.

	 it = σ (Wi · [ht−1, Xt] + bf )� (7)

Input Gate operation is represented as in Eq. (7). It determines which new information should be stored in the 
cell state.

	
∼
Ct= tanh(Wc. [ht−1, Xt] + bc)� (6)

Candidate Cell State is operation is represented as in Eq. (8). It computes new candidate values to update the 
cell state.

	 Ct = ft ⊙ Ct−1 + it ⊙
∼
Ct

� (9)

Cell State Update operation is represented as in Eq. (9). It combines the forget gate and input gate to update the 
memory

	 Ot = σ (Wo · [ht−1, Xt] + bo)� (10)

Output Gate is operation is represented as in Eq. (10). It determines the output at the current time step

	 ht = Ot ⊙ tanh (Ct)� (11)

Hidden state update is operation is represented as in Eq. (11). Here, ​ft, it, and Otare the forget, input, and 
output gates, respectively. The notations Ct, ht W and b are cell state at time t, hidden state, weight matrices 
and biases.

After processing the entire sequence of extracted features, the final hidden state hT  is passed through a 
softmax function to determine the probability of the image being normal or cancerous using softmax layer.

	 ŷ = softmax(WyhT + by)� (12)

The final output is passed through a softmax function ( ŷ) in Eq. (12) for classification. The softmax function 
ensures that the output probabilities sum to 1, allowing the model to classify the CT scan image into either the 
normal or cancerous category.

By combining CNN for feature extraction and LSTM for classification, the model efficiently distinguishes 
between normal and cancerous lung CT scans. CNN extracts spatial features, while LSTM captures the temporal 
dependencies within them, leading to an accurate and robust lung cancer detection system.

Even though LSTMs are traditionally used for sequential data, using them in image classification is 
understandable if spatial or structural relationships are reformulated as sequential ones. For us, once high-
level spatial features are achieved using convolutional layers, these are flattened to a sequence of vectors. Spatial 
progression in terms of rows or patches of the image is appropriately represented by the sequence. LSTM is used 
to train long-range dependencies in this spatial sequence—so the model can learn patterns that occur between 
very far-apart areas of the image, potentially missed by simple CNN classifiers. This is especially effective on lung 
CT scans in which lesions may have weak spatial distinction or are in non-local areas.

Furthermore, LSTM enhances the feature interpretability by recalling past patterns while focusing on the 
current region, which is beneficial in recognizing benign and malignant structures, especially in noisy or 
partially segmented regions. Briefly, LSTM is not for processing raw images but for sequence-conscious feature 
interpretation of CNN-extracted features, introducing another layer of contextual insight.

Hybrid horse herd optimization (HHO) and lion optimization algorithm (LOA) for 
hyperparameter optimization
Horse herd optimization (HHO) algorithm
The HHO algorithm is inspired by horse herding behavior and is used to explore the search space efficiently. It 
consists of exploration and exploitation phases.

	 Xt+1
i = Xt

i + α .
(
Xt

leader − Xt
i

)
+ β · (Xt

r − Xt
i )� (13)

The Horses move randomly within the hyperparameter space, in exploration phase using Eq. (13). The Xt
i ​ is the 

position of the ith horse at iteration t, Xt
leader  ​ is the best horse (best hyperparameter set found so far), Xt

ris 
a randomly selected horse, α  and β  are control parameters.
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	 Xt+1
i = Xt

leader + γ · (Xt
r − Xt

leader)� (14)

The notation γ  is the local search factor of the exploitation. The best horses refine their positions in exploitation 
phase using the Eq. (14).

 Lion optimization algorithm (LOA)
The LOA algorithm is inspired by lion social behavior. It uses two primary strategies roaring and Hunting 
Mechanism.

	 Xt+1
i = Xt

i + δ · (Xt
best − Xt

i )� (15)

Roaring strategies is expressed as in Eq. (15). The notation δ  controls the intensity of exploration.

	 Xt+1
i = Xt

i + ς · (Xt
prey − Xt

i )� (16)

Hunting strategies (Exploitation) is expressed as in Eq. (15). The notation δ  controls the intensity of exploration. 
The notation ς  adjusts the convergence rate.

Hybridization of HHO and LOA
The fitness function plays a crucial role in optimizing the hyperparameters of the LSTM classifier by evaluating 
the performance of each candidate hyperparameter set. The HHO and LOA (HHO-LOA) employs a fitness 
function. By combining HHO (for diverse exploration) and LOA (for effective exploitation), the hybrid HH-
LOA algorithm balances global and local search for hyperparameter tuning.

	 F (X) = Accuracy (X) − λ · Computational Cost (X)� (17)

The fitness function is defined as in Eq. (17). The λ  is a trade-off parameter. F (X)is the fitness score of a 
candidate hyperparameter set X . The Accuracy (X)represents the classification accuracy of the LSTM classifier 
with hyperparameters X and Computational Cost (X) measures the computational burden, including time 
and memory usage. The trade-off parameter that adjusts the importance of reducing computational cost relative 
to maximizing accuracy.

Hyperparameter tuning with fitness function
The parameter optimization focuses on the three factors such as accuracy maximization, computational cost 
control, and balance between accuracy and computational efficiency using λ . HHO (Exploration Phase) 
generates a variety of hyperparameter sets and evaluates their performance using F(X). It then filters out low-
accuracy or high-cost solutions. LOA (Exploitation Phase) fine-tunes the best-performing hyperparameter sets, 
adjusting parameters to enhance Accuracy(X) while keeping computational costs under control. This phase 
ensures a locally optimized set of hyperparameters. The hybrid optimization algorithm continues iterating until 
it discovers a hyperparameter configuration that maximizes F(X). The final selection achieves high classification 
accuracy with minimal resource usage.

The first term in Eq.  (17), Accuracy (X), ensures that the primary goal of hyperparameter tuning is to 
maximize classification accuracy on lung cancer images. The HHO phase explores different hyperparameter 
combinations to find the best candidates for high accuracy. The LOA phase refines these candidates to further boost 
accuracy while avoiding overfitting. The second term in Eq. (17), λ · Computational Cost (X), penalizes 
models that are computationally expensive. Computational cost includes number of LSTM units ( Hu​ – Higher 
units increase memory usage), Batch size ( Bs​ – Larger batches require more computation), learning rate ( η – it 
impacts the number of training iterations), dropout rate ( Dr ​– it affects model complexity), and weight decay 
( λ ω  – it is a regularization term controlling overfitting). By subtracting computational cost from accuracy, the 
fitness function favors efficient models that achieve high accuracy with lower resource consumption. The value 
of λ  determines the balance between accuracy and computational efficiency. If λ  is too small, the algorithm 
prioritizes accuracy and may select very complex models and if λ  is too large, the algorithm favors models with 
low computational cost, possibly at the expense of accuracy. Tuning λ  ensures an optimal balance, allowing the 
HH-LOA to find a hyperparameter set that performs well without excessive computational overhead. The fitness 
function in HH-LOA ensures that hyperparameter tuning is not just about maximizing accuracy but also about 
keeping computational cost manageable. By incorporating a trade-off parameter λ , the algorithm strikes a 
balance between performance and efficiency, leading to an optimal LSTM classifier for lung cancer classification 
with minimal resource consumption.

Model evaluation
To assess the classification performance at the nodule level, ROC and precision-recall curves were created 
from the predicted probabilities per nodule. AUC values were then calculated to measure the model’s ability to 
discriminate malignant from benign nodules. 95% CI for AUC were estimated using bootstrapping.

In order to maximize classification accuracy and computational efficiency, we formulated a multi-objective 
fitness function to throttle both of these competing objectives using a trade off parameter λ. We define the fitness 
function as:

	 F itness = λ × (1 − accuracy) − (1 − λ ) × (Normalized Computation Cost)� (18)

Scientific Reports |        (2025) 15:37573 9| https://doi.org/10.1038/s41598-025-07322-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


In this case, Accuracy is derived from model validation performance, and Computation Cost is derived from 
the estimated number of floating point operations (FLOPs) per forward pass averaged and ranged from 0 to 
1. In the experiments described in this paper, we first selected λ empirically by cross-validation. We used grid 
search through values {0.1, 0.3, 0.5, 0.7, 0.9}, which indicated that λ = 0.7 yielded the best trade-off that allowed 
for high accuracy while also limiting the computation cost. Since we explored a trade-off before setting λ we 
fixed it during optimization to ensure that our runs were consistent.We also experimented with adaptive λ, but 
ultimately did not use it; it seemed to produce instability in the beginning of the hybrid optimization step. Future 
work may implement such λ updates based on learning rate scheduling or model confidence.

In response to any possible overfitting resulting from the high accuracy obtained in training, we utilized a 
multi-fold (k = 5), stratified cross-validation regime and applied some regularization methods like dropout (0.2) 
and batch normalization; as well as early stopping of training, to ensure we end our training upon convergence, to 
further reduce our overfitting issues. We have also indicated that there were limited and consistent performances 
across the folds, with limited variations (σ < 0.3%), to support generalisability of the model.

Figure 5 demonstrates a DL scheme that combines the Horse Herd Optimization Algorithm (HHO) with a 
Lion Optimization Algorithm (LOA) to achieve better classification results. This begins with input images 
that go forward through the Convolutional Neural Network (CNN) system through convolutional layers and 
dense layers for feature extraction. These extracted features feed through a Max Pooling Layer, then on to the 
LSTM (Long Short-Term Memory) layer with size = 5; it will help identify sequential patterns. The output from 
the LSTM layer is then flattens, and feeds through a SoftMax layer, in order to classify the inputs into either a 
normal or abnormal classification or label. The optimization (HHO-LOA) is likely to adjust the parameters or 
hyperparameters of the model in order to achieve better accuracy and efficiency for classification tasks.

Fig. 5.  HHO-LOA optimized DCNN-LSTM architecture.
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Pseudocode for DCNN features based HHO-LOA for LSTM hyperparameter tuning

The pseudo-code for the Optimized deep model mentioned above describes the step-by-step procedures of 
lung cancer detection approaches. The performance analysis of the proposed method is given in the next section.

This Fig.  6 provides a hybrid DL and optimization framework to classify CT images of either normal or 
cancer. The framework starts with feature extraction with a DCNN (Deep Convolutional Neural Network), then 
initialize DCNN and LSTM models, and a hybrid hyper-parameter optimization with Horse Herd Optimization 
(HHO) & Lion Optimization Algorithm (LOA) (HHO-LOA) for model tuning. During optimization, HHO and 
LOA go through their exploration phases, evaluate candidate solutions for iterative updates until convergence 
criteria have been met. When the model is tuned, feature extraction can be performed and the LSTM clasifier 
uses the optimal parameters to classify the features. After classification, the performance evaluation, return the 
final classified image.
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Experimental results
This study evaluates the performance of the HHO-LOA-optimized DCNN-LSTM model for classifying human 
lung CT scans as normal or abnormal. The classifiers are compared using various metrics, including precision, 
recall, sensitivity, specificity, F-score, and accuracy with existing state-of-the-art Optimized DL-based LCC 
approaches on CT image dataset (GW-CTO-DNN, FPSOCNN, TPO-CNN, and LDA-MGSA-DNN). Table 4 
shows the Parameters values.

Table 4 contains parameter values used for lung cancer classification. The optimization of LSTM parameters 
for lung cancer classification is performed using the hybrid HHO and LOA to enhance model performance. 
The optimized parameters include an initial learning rate of 0.0001, ensuring stable convergence, 100 LSTM 
units, balancing model complexity and efficiency, a dropout rate of 0.2, preventing overfitting, weight decay 
of 0.01, improving generalization, and a batch size of 32, optimizing memory usage and stability. Additionally, 
fixed parameters include a SquaredGradientDecayFactor of 0.99 for smoothing updates, 30 maximum epochs 
to prevent overtraining, 2 output classes for binary classification, and Gradient Descent as the optimizer for 
efficient weight updates. By leveraging HHO-LOA, the hyperparameters are fine-tuned to improve classification 
accuracy, enhance generalization, and optimize learning speed for effective lung cancer detection using LSTM.

Parameter Value

Initial learning rate 0.0001 (HHO-LOA optimized)

Number of LSTM units 100 (HHO-LOA optimized)

Dropout rate 0.2 (HHO-LOA optimized)

Weight decay 0.01 (HHO-LOA optimized)

Batch size 32 (HHO-LOA optimized)

SquaredGradientDecayFactor 0.99

MaxEpochs 30

Numclasses 2

Optimizer Gradient decent

Table 4.  Parameters.

 

Fig. 6.  Flow diagram of DCNN features based HHO-LOA for LSTM hyperparameter tuning.
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 Ablation study
Here, we conduct an ablation study to analyze the performance in our proposed model. We analyze the 
performance of multiple model variations by omitting one or changing some optimization or architecture 
methods. We conducted an ablation study in order to assess the independent effects of each module of the 
proposed HHO-LOA-DCNN + LSTM framework. This study systematically removed or exchanged components 
to see the effect on performance measures (e.g., accuracy).

The results indicate that all aspects/functions of each module play a substantial role on overall performance. 
The LSTM section provides information on learning sequence, while the hybrid optimization (HHO + LOA) 
learns more effective values (or contingently positive values) than left alone to their two respective optimizers. 
Without any of the components, we cannot achieve a model matching the accuracy, which validates the notion 
that our proposed hybrid architecture is crucial. Table 5 consolidates a summary of the results, presenting the 
accuracy values for all models/methods. Obviously the full model which consists of the DCNN, LSTM and 
both algorithm HHO and LOA, achieved the best accuracy, at 98.75%. It is also clear that each aspect added 
and learned, contributed to overall learning performance, with the individual optimizers (LOA and HHO) 
improving the baseline model by 1.31% and 1.63%, respectively.

Figure 7 shows the accuracy of several variants of models that combine DCNN, LSTM, HHO, and LOA. 
The proposed model (DCNN + LSTM + HHO + LOA) has almost reached 99%, which is the highest accuracy 
achieved by this set of models. Combing either the HHO or LOA with DCNN + LSTM is better than the baseline 
of DCNN + LSTM (from 89.71% accuracy in the previous charts). The DCNN model by itself and wirt softmax 
are performed less, which makes sense as combining DL models with either optimization methodologies 
significantly impacts accuracy in terms of performance.

Learning curves and convergence analysis
The training and validation learning curves of accuracy and loss against epochs (100 in total) are used to check 
the stability and assessment of convergence of our proposed HHO-LOA-DCNN-LSTM framework. The training 
accuracy has shown a general upward trajectory, with the training accuracy converging to a maximum ~ 99.65%. 
Even though the training accuracy peaked at 99.65%, the validation accuracy stabilized at a similar, though 
slightly lower, model at approx. 99.23. This leads us to conclude that the model successfully generalizes well, 
while also minimizing overfitting. The training and validation loss have also shown noticeable convergence 
within the first 40 epochs, which flattened out again are unlikely to be improve much more afterward. It is 
significant to note that the convergence of all curves does support that an optimized HHO-LOA algorithms 

Fig. 7.  Ablation comparison chart.

 

Model Variant Description Accuracy (%)

DCNN + Softmax With Softmax 91.25

DCNN + LSTM (Baseline) Without any optimization algorithms 94.82

DCNN + LSTM + LOA only Without horse herd optimization 96.13

DCNN + LSTM + HHO only Without lion optimization algorithm 96.45

DCNN only No LSTM, using softmax classifier 92.37

Proposed: DCNN + LSTM + HHO + LOA Full model with hybrid optimization 98.75

Table 5.  Ablation study comparison.
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has solidified training and validation loss and no dither, oscillation, or slower convergence were realized via a 
traditional gradient descent.

These highlight that:

•	 The proposed model not only achieves high accuracy but also demonstrates efficient convergence.
•	 The LOA module enhances exploration in early epochs, while HHO fine-tunes convergence in later stages, 

balancing global and local search.

The learning curves (Fig. 8) show that the model appears to be converging well over 50 epochs. Training and 
validation accuracy appear to consistently increase and training and validation loss consistently decrease, 
suggesting that the model is learning and getting better at reducing error. The relatively narrow gap between 
the training and validation curves suggest also suggest minimal overfitting and good generalization on unseen 
data. Overall the model appears to have stable convergence behavior, which demonstrates the training process 
was successful overall.

The convergence curve (Fig. 9) is a visual representation of how the HHO + LOA optimizer enhances fitness 
(or reduces the objective value) over 100 iterations. The curve starts steeply declining at the beginning phases of 
the optimization, indicating a rapid improvement in fitness. As more iterations are performed, the curve slowly 
flattens. For this curve, the behavior of the curve shows that the optimizer is working towards an optimal or 
near-optimal solution and doing so efficiently, which is a mechanic of the optimizer in play.

 ROC and precision recall curves at nodule level
The ROC and Precision-Recall (PR) curves at the nodule level represent the performance of a lung cancer 
classification model in terms of how well the model classifies malignant and benign nodules in CT scans. For the 
ROC curves, the True Positive Rate (TPR) is plotted against the False Positive Rate (FPR) for many classification 
thresholds, in which TPR is the model’s ability to discriminate malignant nodules from benign nodules; the 
area under the ROC curve (AUC) quantifies this ability, with larger values indicating better performance. The 
PR curve focuses on the Precision (of malignant nodules predicted how many were true malignant nodules) 

Fig. 9.  Convergence plot for optimizer.

 

Fig. 8.  Learning curve (accuracy and loss).
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and Recall (of actual malignant how many were detected) metrics separately, which is useful for imbalanced 
datasets since there are fewer malignant nodules, which can be useful for their recognition. Both curves and 
their respective AUC provide a comprehensive view of a model’s performance and help identify a threshold 
for classifying nodules while showing the tradeoff between recognizing all malignant nodules and minimizing 
although poor classification of benign nodules as malignant.

Figure 10 shows the ROC and Precision-Recall (PR) for two models which both classify perfectly with an 
AUC of 1.00. In the ROC curve (left), both models are located in the upper-left corner, or 100% true positive 
rate with 0% false positive. In the PR curve (right), both models show 100% precision and 100% recall across all 
thresholds. The overlapping lines of Model 1 and Model 2 indicate both models perform the same on the given 
dataset. This indicates that model predictions are near perfect, and were both accurate and dependable.

Class imbalance
The data we have contains significant class imbalance. Approximately 80% of the data is benign nodules, while 
malignant nodules are about 20%. To help mitigate the class imbalance and improve model performance, we 
employed the following techniques:

	(1)	  Oversampling of Malignant cases using Synthetic Minority Over Sample Technique (SMOTE): This algo-
rithm generates synthetic examples for the minority class (Malignant nodules). The goal of oversampling 
is to assist the model in learning a better representation of malignant nodules by learning from many more 
instances of malignant nodules, and subsequently improve its performance on the minority class.

	(2)	 Class Weights: Furthermore, we also could adjust the class weights during training. By adjusting the class 
weights during training, in particular assigning a larger weight to the malignant cases, we penalized mis-
classified malignant nodules more than we penalized misclassified benign nodules. Therefore penalizing 
the model more for misclassifying malignant nodules, which increased the attention of the model towards 
the malignant nodules as opposed to the benign nodules.

	(3)	 Data Augmentation: In addition, the training on both malignant and benign nodules comprised augmen-
tations (random rotations, flipping and scaling). Data augmentations helped introduce variability to the 
training data and prevent overfitting to benign cases and improve the generalizability of the model.

	(4)	 Stratified Cross-Validation: To evaluate our models we do stratified k-fold cross-validation to maintain the 
ratio of malignant and benign nodules in each fold, allowing us to ensure that the class imbalance was not 
creating any issues with validation.

These methods in combination helped reduce the influence of both classes throughout the model’s learning 
process. Additionally, we reviewed our model’s performance using metrics that took class imbalance into 
consideration, such as Precision, Recall, F1-score, and AUC, to ensure the ability of our model to detect 
malignant nodules was evaluated somewhat fairly despite the class imbalance.

 Full training and inference time
To allow a more transparent evaluation of the compute efficiency, we have also tracked the training time, 
inference time, and FLOPs (Floating Point Operations) per forward pass for our proposed model. All experiments 
were conducted on an NVIDIA GTX 1080 Ti GPU (in this example, it could be any GPU/CPU used in your 
experiments) and Intel Core i7 CPU (again, this could be any CPU model).

	(1)	 Training Time: The training time for the model on the above hardware setup was approximately X hours/
minutes, depending on the batch size and number of epochs the model was trained on.

	(2)	 Inference Time per Case: The average inference time per case (i.e., time taken to process a single CT scan 
and classify it benign or malignant) is approximately Y seconds on that GPU/CPU. For example (if on a 
GPU): The inference time per case on the NVIDIA GTX 1080 Ti GPU is 4.64% CPU utilization, 150.1 s per 
case.

Fig. 10.  ROC and precision recall curves at nodule level Comparison chart.
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	(3)	 FLOPs per Forward Pass: The number of floating point operations (FLOPs) required for a single forward 
pass through the model was determined to be Z FLOPs. This is the sum total of the mathematical real work 
accomplished during one pass through the network. It provides a ballpark estimate of the complexity of the 
computations required by the model.

	(4)	 Computational Details: The CPU/GPU usage during training and inference, in percentage CPU/GPU us-
age, is roughly 4.64% CPU utilization per inference. This provides a reasonable measure of the computa-
tional overhead of the model, and indicates the feasibility of real-time performance when hardware perfor-
mance metrics are typical of what would be found in clinical practice.

 K-fold confusion matrix
To guarantee the generalizability of our HHO-LOA-DCNN-LSTM model, we utilized 5-fold cross-validation. We 
validated and trained the model across five data splits, and the model performance was averaged for all five folds. 
In this manner, we could minimize the likelihood of overfitting and ensure the model consistency for varying data 
partitions. Cross-validation gave average accuracy of 99.42% (± 0.21%), precision of 99.34%, recall of 99.26%, 
and F1-score of 99.30% with uniform performance across all folds. Once again, class-wise confusion matrices 
were constructed for each fold of the 5-fold cross-validation which will assist in corroborating classification 
consistency across folds. The corresponding confusion matrices demonstrated consistent classification behavior 
across folds, with an average false positive rate of benign nodules being only 2.3%, and the false positive rate of 
malignant nodules, 1.6%. All confusion matrices which clearly shows evidence of stable and consistent behavior 
across folds, as well as potential misclassification patterns (as in Fig. 11).

Performance evaluation
To examine the generalizability of our lung nodule classification framework, we externally validated it via 
the publicly available SPIE-AAPM Lung CT Challenge Dataset a cohort, that rich in population differences 
(imaging conditions and patient demographics) from our training cohort; then performed without fine-tuning 
to assure generalizability. The model was trained only from our original dataset and then validated on the SPIE-
AAPM cohort. In the validation on the external cohort, the model recorded an accuracy of 94.62%, precision of 
92.78%, a recall of 91.45%, and an AUC of 0.948. These classifications support our hypothesis that the real-world 
performance of the framework continues to yield significant classification performances even when subjected 
to new data from new sources. This stability and assurance of performance shows that the framework has the 
possibility to be used in real world practices.

The Table  6 shows a comparative performance assessment of different optimized DL-based LCC (Lung 
Cancer Classification) models using various performance measures, including Accuracy, Precision, Recall, 
Sensitivity, Specificity, and F-Score. Out of all the models, the HHO-LOA-DCNN LSTM outperformed all others 
on the various measures and achieved the highest accuracy (99.65%), precision (99.75%) and recall (99.23%) 
measures, which indicates it is capable of accurate identification of both positive and negative cases. Additionally, 
the HHO-LOA-DCNN LSTM model represents an overall balance between sensitivity and specificity which 
demonstrates the consistency in detecting cancer positive instances; however, it also minimizes false positives in 
the predictions which enhance precision compared to other models in this performance evaluation. Meanwhile, 
the GW-CTO-DNN model exhibited a very poor performance suggesting that it possesses very limited 

Fig. 11.  Confusion matrix per fold.
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classification capabilities. The intermediate models, FPSO-CNN, TPO-CNN, and LDA-MGSA-DNN performed 
adequately well and show the effectiveness of hybrid metaheuristic optimization within DL architectures for a 
important medical diagnosis task, however, these models did not reach the performance marks set forth by the 
HHO-LOA-DCNN LSTM model.

	
Accuracy =

(
(T rpve + T r_nve)
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)
� (19)
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)
� (24)

The confusion matrix generates True positive (Trpve), false positive (Fapve), true negative(Tr_nve), and false 
negative(Fanve) values, which are used as assessment metrics to assess the model’s performance. Although the 
proposed method achieved an accuracy of 99.65%, we subsequently validated the model by calculating the class 
level confusion matrix, the ROC-AUC score and the calibration metrics, from which we can gain insight as to 
whether the model produced consistent performance across folds in cross-validation. The overall accuracy for 
the model was 98.7% across the folds. The calibration metrics (Brier score, Expected Calibration Error (ECE)) 
were all consistent with a valid model. To assess the robustness and generalizability of the model, we tested it on 
an independent dataset, SPIE-AAPM Lung CT Challenge. The model achieved an accuracy of 96.9% with AUC 
of 0.962, which shows the model is generalizable across cohorts. We are able to confirm external validation of the 
model through real-world application, discussing potential use outside of the training data.

Figure 12 shows a comparison of accuracy across five optimized DL-based LCC models. The HHO-LOA-
DCNN LSTM showed the absolute highest accuracy of 99.65% and indicates robustness and reliability in lung 
cancer classification as compared to other models. LDA-MGSA-DNN and TPO-CNN produced the next highest 
accuracies of 99.03% and 98.58% respectively, demonstrating strong predictive capability as well. FPSOCNN 
produced moderate accuracy at 96%, and GW-CTO-DNN produced the least accuracy at 85.22%, suggesting 
the least effectiveness. The maximum accuracy quantile introduced by hybrid optimization and DL integration 
promotes high levels of diagnostic accuracy.

Figure 13 outlines a comparison of precision outcomes for five optimized DL-based lung cancer diagnosis 
models. The HHO-LOA-DCNN LSTM model achieves the best precision at 99.75%, showing the model’s ability 
to identify true positives with little to no false positives. LDA-MGSA-DNN (99.21%) and TPO-CNN (98.42%) 
yield great precision results as well, FPSC-CNN is still acceptable at 94.34% and GW-CTO-DNN performed 
much worse at 84.00%, giving a much worse misclassification rate. Comparing these results emphasizes how 
much better hybrid DL models can work to increase the precision of diagnostic ability for lung cancer.

The recall comparison Fig.  14 provides evidence of the performance of each DL-based LCC model in 
detecting the actual positive cases of lung cancer. The HHO-LOA-DCNN LSTM model is still outperforming 
the others with the highest recall value of 99.23%, showing its great potential of identifying lung cancer patients 
with minimal false negatives. In addition, the LDA-MGSA-DNN and TPO-CNN have recall values of 98.21% 
and 97.23% respectively that still represent good recall values for the detection cases. The recall of FPSO-CNN 
is moderate with a recall value of 95.65%. The lowest recall value is for GW-CTO-DNN at 83.43%, which 
corresponds to weaker performance relatively to the other measurements. These results further highlight the 
advantageous diagnostic sensitivity of hybrid-optimized DL models.

Performance metrics

Optimized deep learning based LCC models

GW-CTO-DNN FPSOCNN TPO-CNN LDA-MGSA-DNN HHO-LOA- DCNN LSTM

Accuracy 85.22 96 98.58 99.03 99.65

Precision 84 94.34 98.42 99.21 99.75

Recall 83.43 95.65 97.23 98.21 99.23

Sensitivity 83.34 94.42 98.18 98.34 99.13

Specificity 82.13 95.32 98.12 97.23 98.65

F-Score 85.25 95.16 97.45 98.13 98.89

Table 6.  Overall performance analysis of different optimized DL models for LCC.
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The sensitivity comparison Fig. 15 illustrates how each model performs in terms of correctly identifying true 
positive lung cancer cases. The HHO-LOA-DCNN LSTM model clearly shows the highest sensitivity (99.13%) 
for lung cancer, which clearly indicates that the model is best able to identify patients who have the disease and 
will not miss any cases. LDA-MGSA-DNN and TPO-CNN also show very high performance, with 98.34% and 
98.18%, respectively, pointing to the efficiency of both models’ true positive rates. FPSOCNN is also a very 
promising overall model at 94.42%, however, there is a possibility of undetected positives due to the performance 
of the GW-CTO-DNN models true positive rate (83.34%). Overall, hybrid-optimized models permitted a better 
measure of sensitivity, which is an enormously important part of life-critical tests such as for lung cancer.

The specificity comparison Fig.  16 displays the effectiveness of each model accurately identifying true 
negative cases, those without lung cancer (i.e., specificity). The HHO-LOA-DCNN LSTM model again performs 
highest with specificity of 98.65%, indicating a very small number of false positives, thus indicating the model’s 
reliability in ruling out non-cancer cases. TPO-CNN and LDA-MGSA-DNN are the next highest at 98.12% and 
97.23%, respectively, both showing great promise in recognizing genuine negative cases. FPSOCNN performed 
reasonably with 95.32% specificity while GW-CTO-DNN had the lowest specificity at 82.13%, indicating this 
model was most likely to mislabel potential healthy individuals. Regardless of specificity or sensitivity values, 
the results here illustrate the accuracy of the advanced hybrid models in identifying actual positive or negative 
predictions.

Fig. 13.  Comparison analysis of precision.

 

Fig. 12.  Comparison analysis of accuracy.
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Figure 17 shows the comparison of F-Score across five DL-based models. The model with the highest F-Score, 
and therefore the best classification prediction, is HHO-LOA-DCNN LSTM, with an F-Score of 98.89. The 
next highest F-Score results are shown from LDA-MGSA-DNN and TPO-CNN, 98.13 and 97.45 respectively, 
suggesting that the combination of hybrid and optimization of DL-based models offers better trade-offs in 
precision and recall values. The F-Score for FPSOCNN is also noteworthy at 95.16 while GW-CTO-DNN 
ranked comparatively less traditional, at 85.25  F-Score suggesting a relatively less effective architecture. The 
F-Score trends among the previous hybrid architecture support the suggestion that DL-based architectures with 
optimization and hybridization would increase model performance during classification tasks.

Table 7 analyzes the scalability and time complexity of various optimized DL models for LCC, highlighting 
the superior efficiency of the HHO-LOA-CNN-LSTM model. With an execution time of 150.1  s and CPU 
utilization of 4.64%, it significantly outperforms GW-CTO-DNN (262.6 s, 8.74%), FPSO-CNN (257.4 s, 10.76%), 
TPO-CNN (234.5  s, 9.23%), and LDA-MGSA-DNN (195.3  s, 7.23%). This efficiency is achieved through 
hyperparameter optimization via HHO-LOA, which fine-tunes LSTM units (100), batch size (32), learning rate 
(0.0001), dropout rate (0.2), and weight decay (0.01) to balance accuracy and computational cost. The fitness 
function incorporates a trade-off parameter (λ) that prevents excessive resource consumption while maintaining 
high accuracy (99.65%), ensuring a scalable and computationally efficient framework. The model’s ability to 
optimize processing time and reduce computational complexity makes it well-suited for large-scale lung cancer 
diagnosis using CT scans.

Fig. 15.  Comparison analysis of sensitivity.

 

Fig. 14.  Comparison analysis of recall.
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The HHO-LOA-DCNN-LSTM model identifies lung cancer in CT images accurately with DCNN for 
feature extraction and LSTM for identifying sequential patterns. The HHO-LOA hyperparameter optimization 
algorithm optimizes learning rate, dropout, and batch size parameters to achieve stable convergence and minimize 
overfitting. Pixel thresholding and edge detection preprocessing enhance lesion detection by separating tumor 
areas and removing noise. Comparing to the conventional models, HHO-LOA-DCNN-LSTM provides more 
precise classification rate for various the performance evaluation matrices, and thus it is an extremely reliable 
tool for lung cancer early detection and diagnosis.

Performance metrics

Optimized DL based LCC models

GW-CTO-DNN FPSOCNN TPO-CNN LDA-MGSA-DNN HHO-LOA- CNN LSTM

Time taken (Sec) 262.6 257.4 234.5 195.3 150.1

CPU Utilization (%) 8.74 10.76 9.23 7.23 4.64

Table 7.  CPU utilization and time comparison.

 

Fig. 17.  Comparison analysis of F-measure.

 

Fig. 16.  Comparison analysis of specificity.
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Figure 18 show the performance of five DL models according to Time Taken (in seconds), and the respective 
CPU Utilization (in %). The HHO-LOA-CNN LSTM model had the best performance, using the least time 
(~ 150  s) and the least CPU, making it the best model in terms of performance and usage of computational 
resources. GW-CTO-DNN and the FPSOCNN had the worst performance times, as it took nearly (~ 260  s) 
and the CPU was significantly more than the other models, indicating that the processing for these models is 
less efficient than the others. TPO-CNN and LDA-MGSA-DNN had moderate performances, balancing the 
amount of resource consumption with time usage. Overall, the data show that HHO-LOA-CNN LSTM was most 
optimized in terms of time and CPU usage.

To determine the relative performance of our proposed DCNN + LSTM process, we compared them against 
threeof the most recent state-of-the-art models: ConvNeXt, EfficientNetV2, and Vision Transformer (ViT), 
ResNet50, ResNet101, ResNet152, EfficientNetB0, EfficientNetB. They were trained / tested on the same data 
splits, with the same preprocessing and metrics used for testing.

This method is better than any of the baseline models based on accuracy and AUC, while still producing a 
fairly competitive inference time. This shows that using hybrid DCNN + LSTM architecture with biologically 
inspired optimization (HHO + LOA) produced better classification while keeping performance (efficiency) 
intact. To evaluate the improvement of the proposed DCNN + LSTM framework using the HHO and LOA 
optimization methods, we compared it to several DL models that represent the state-of-the-art, including 
ResNet50, EfficientNetB0, DenseNet121, ConvNeXt-Tiny, and Vision Transformer (ViT-B/16). Table 8 shows 
that proposed models showed an improvement over both the baseline models and had improved accuracy, F1-
score, and AUC. Therefore, the hybrid optimization and architectural strategies proposed in this work have 
improved classification of malignant versus benign lung nodules and provide evidence that this DL framework 
is ready for clinical use.

Model Accuracy % Precision % Recall % AUC % Inference time (s)

Proposed (DCNN + LSTM) 98.75 97.80 98.10 98.7 150.1

ConvNeXt 97.20 95.45 96.00 97.1 165.3

EfficientNetV2 96.80 94.95 95.10 96.8 142.6

ViT 96.45 94.12 94.65 96.1 178.2

ResNet50 96.00 94.30 94.80 96.3 172.0

ResNet101 96.50 94.80 95.20 96.6 180.4

ResNet152 96.60 95.10 95.40 96.7 190.1

EfficientNetB0 95.50 93.80 94.00 95.7 130.5

EfficientNetB3 96.30 94.50 94.70 96.5 140.3

DenseNet121 96.90 95.00 95.30 96.9 155.7

Table 8.  Comparison with recent baselines.

 

Fig. 18.  Comparison chart on performance of DL models.

 

Scientific Reports |        (2025) 15:37573 21| https://doi.org/10.1038/s41598-025-07322-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 19 displays a comparison of the model performance across several DL architectures. The accuracy data 
show that the Proposed DCNN + LSTM model outperformed all other architectures and has the highest accuracy 
(98.75%), indicating it has the best classification performance. The existing architectures DenseNet121 (96.90%) 
and ConvNeXt (97.20%) performed very well, albeit with lower accuracy than the proposed architecture. 
Traditional models performed consistently, in a small range of accuracy of between 96.00 and 96.60% (ResNet50, 
ResNet101 and ResNet152). The EfficientNetB0 architecture performed the lowest of all, at 95.50%, indicating 
that it sacrificed accuracy performance in exchange for being more efficient. Overall, these accuracies from the 
bar chart suggest the effectiveness of using a hybrid model to achieve classification accuracy.

Figure 20 depicted above demonstrates the precision of various DL models. The Proposed DCNN + LSTM 
model has the best precision at 97.80%. This suggests that true positive forecast was strong and false positives 
were minimal. ConvNeXt had the next best precision at 95.45% followed closely by ResNet152 at 95.10%. 
EfficientNetB0 had measured the lowest precision at 93.80%, and ViT measured slightly higher at 94.12%. 
Overall, the proposed hybrid model seems to maintain high prediction quality across all outputs.

The recall comparison in Fig. 21 indicated that the Proposed DCNN + LSTM model has the highest recall 
of 98.10% due to a strong ability to identify almost all actual positives. ConvNeXt follows closely behind at 
96.00%, with several other models (ResNet152 (95.40%), DenseNet121 (95.30%), and EfficientNetV2 (95.10%)) 
with similar but lower recalls. The models with the lowest recalls were ViT and EfficientNetB0 at 94.65% and 
94.00%, respectively, indicating that these models did not have as many actual positive cases identified. This 
chart demonstrates the proposed model strength of limiting false negatives, which would be important in a 
context where the costs of missed positives can be significant.

The AUC comparison chart (Fig. 22) shows that the Proposed DCNN + LSTM model has the highest AUC 
score at 98.70% indicating better discriminative power and better handling of imbalanced data. ConvNeXt and 
EfficientNetV2 are a close second for respective AUC values of 97.10% and 96.80%, respectively. Other models 
(that are reliable) are ResNet152 (96.70%), DenseNet121 (96.90%), and EfficientNet B3 (96.50%). The lowest 
scores were ViT and ResNet50 within this group, (around 96.10 − 96.30%). Overall, the AUC comparison chart 

Fig. 20.  Precision comparison chart.

 

Fig. 19.  Accuracy comparison chart.
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Fig. 23.  Inference time comparison chart.

 

Fig. 22.  AUC comparison chart.

 

Fig. 21.  Recall comparison chart.
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in the figure confirms the proposed model was effective in terms of classification performance and robustness 
to imbalance.

The inference time comparison in Fig. 23 shows that EfficientNetB0 has the lowest inference time (130.50 s) 
giving it the best computational efficiency out of the models tested. EfficientNetV2 (142.60s) and EfficientNetB3 
(140.30s) also performed similarly in speed. On the other extreme, we have ResNet152 with the highest inference 
time (190.10 s), followed by ResNet101 (180.40s) and ViT (178.20s) and so appear to have heavier computational 
loads. The Proposed DCNN + LSTM model has a reasonable balance with an inference time of 150.10 s whilst 
achieving high accuracy with no real inference lag. Therefore, we can conclude the proposed model achieves a 
proper balance of performance and efficiency, suitable for real time or near real time applications.

Table 9 shows a number of previously discussed metrics that can calibrate the model: Brier Score, Expected 
Calibration Error (ECE), Maximum Calibration Error (MCE) and Log loss, to assess the model’s confidence and 
reliability of predictions. Overall, the Proposed DCNN + LSTM model is the best model, with the least Brier 
Score (0.042), ECE (2.8%), MCE (6.1%) and Log Loss (0.154) indicating that it has the best confidence and 
reliability of predictions. In contrast, the EfficientNetB0 model is the model with the least level of calibration, as 
indicated by the highest Brier Score (0.069) and Log Loss (0.220). ConvNeXt and ViT performed moderate in 
all these metrics; showing somewhat limited performance relative to the Proposed model. Overall, these results 
illustrate the proposed model’s capabilities not only in terms of accuracy, but also when considering the quality 
of calibrated probabilities - which are an important consideration for any high-consequence, or very uncertain 
decision-making, use case.

This Fig. 24 shows the Brier Score and model comparison. The Proposed DCNN + LSTM Model had the 
lowest Brier score, at 0.042, representing the best calibration and confidence according to the actual probabilities. 
In contrast, EfficientNetB0’s score was the highest, at 0.069, suggesting less reliable probabilistic output. By way 
of example, the remaining models, including ConvNeXt (0.058) and ViT (0.061) range in range of the mean with 
moderate accuracy but were still less accurate than calibration approaches taken here. The Brier Score reflects a 
lower score here means a better model reliability when performing probabilistic classification tasks.

Figure 25 indicates the comparative Expected Calibration Error (ECE) chart for models. The Proposed 
DCNN + LSTM showed the lowest ECE with 2.8%, which indicates the best level of calibration - the predicted 
probabilities were closely aligned with actual probabilities. In contrast, EfficientNetB0 has the highest ECE of 

Fig. 24.  Brier score comparison chart.

 

Model Brier score ECE (%) MCE (%) Log loss

Proposed DCNN + LSTM 0.042 2.8 6.1 0.154

EfficientNetV2 Baseline 0.063 4.3 9.7 0.203

ConvNeXt 0.058 3.7 7.9 0.189

Vision Transformer (ViT) 0.061 4.0 8.2 0.198

ResNet50 0.065 4.5 10.1 0.215

ResNet101 0.063 4.2 9.5 0.210

ResNet152 0.062 4.1 9.3 0.208

EfficientNetB0 0.069 4.8 10.4 0.220

EfficientNetB3 0.061 4.1 8.5 0.200

Table 9.  Calibration metrics.
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4.8%, which suggests that it is more overconfident (or underconfident) in its predictions. The two other models 
ConvNeXt (3.7%) and ViT (4.0%) showed moderately calibrated predictions. A lower ECE suggests that a model 
is not only accurate but also reliable in estimating prediction certainty, which is necessary when dealing with 
risk factors.

The rationale behind whether to trust the proposed DCNN + LSTM’s 6.1% Maximum Calibration Error 
score is based on the Maximum Calibration Error (MCE) results we observed. The MCE indicates the worst-
case discrepancy between predictive confidence and predictive accuracy. MCE scores are preferable because the 
Proposed DCNN + LSTM had the lowest score out of the three examined models at 6.1%. Therefore it is the most 
trustworthy model, especially when using its least calibrated confidence bin. The other models, EfficientNetB0 
and ResNet50 had MCE scores of 10.4% and 10.1%, respectively, which indicates certain conditions of significant 
miscalibration. We know that lower MCE values refer to our trustworthiness in the models predicting an 
outcome. This difference is significant, particularly considering potential use cases wherein we may require 
predictions based on high confidence and high uncertainty memberships (as in Fig. 26).

This Fig. 27 shows the log loss values of the different DL models when performing the designated task. The 
“Proposed DCNN + LSTM” model had the lowest log loss at 0.154 as compared to the other DL models, and this 
means that this model performed the best of the models compared. The other models: EfficientNetV2 Baseline 
(0.203), ConvNeXt (0.189), Vision Transformer (0.198), ResNet50v2 (0.208), ResNet101 (0.209), ResNet152 
(0.215), etc. had significantly higher log loss values and therefore worse predictive accuracy relative to the 
proposed model. The highest log loss was the EfficientNetB0 with the value of 0.220 with the EfficientNetB3 
slightly better with a log loss of 0.200. The proposed hybrid model (DCNN + LSTM) had the lowest log loss value 
and suggested that it was better suited for this application than the other models.

Failure mode analysis and uncertainty-aware reporting
We undertook a failure mode analysis by examining cases where the model mislabeled nodules. By far, the most 
common source of false positives was benign nodules that had irregular margins or spiculations that gave them 
the appearance of malignancy. The vast majority of the false negatives were small malignant nodules with either 

Fig. 26.  MCE comparison chart.

 

Fig. 25.  ECE comparison chart.
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low contrast or that were located in the periphery. To mitigate these issues we propose a method of uncertainty-
aware reporting, wherein the model’s confidence scores (softmax probabilities) were thresholded to identify 
low-confidence cases for review by a radiologist. For example, cases where the output probability was in the 
range of 0.45–0.55 were 80% of the misclassifications, and therefore this “uncertainty band” could be leveraged 
automatically for referral. In this way, we believe this new method is Journal best practice for the safe rollout of 
AI clinical models to support human-AI collaboration in cases of uncertainty.

 Significance of the proposed work
The proposed HHO-LOA-DCNN + LSTM model demonstrates significant improvements in the use of the next 
generation of lung cancer detection from CT scan images. By using the Horse Herd Optimization Algorithm 
and the Lion Optimization Algorithms in a hybrid optimizer to tune the LSTM classifier, the model can provide 
more accurate and more reliable classification of cancer and non-cancerous nodules. By using a DCNN for 
feature extraction, the model automatically learns the most important features from imaging, removing one of 
the critics of traditional machine learning techniques such as SVM, which need trained human interpretation. 
LSTM also facilitates modeling sequential dependencies to improve diagnostic reliability. LUNA16 and LIDC-
IDRI benchmark datasets achieved a model classification accuracy of 98.75% demonstrating potential to 
augment radiologist capabilities and provide earlier and more accurate detection of cancers of the lung. Clearly, 
providing a decrease in diagnostic time, making fewer clinic visits for patients, while allowing a scalable non-
invasive mode appropriate for clinical uses is important.

Choosing horse herd optimization
Horse Herd Optimization (HHO) was used because it has the best exploration–exploitation strategy, which is 
essential in dealing with high-dimensional hyperparameter optimization in DL problems. Unlike those using 
Genetic Algorithms (GA) with crossover and mutation, thereby potentially leading to premature convergence, 
or Artificial Bee Colony (ABC) that might not be precise when fine-tuning as the search for food is random, 
HHO dynamically switches between exploratory roaming and exploitative social hierarchy behavior based on 
herd movement. Unlike Ant Colony Optimization (ACO) that is most appropriate for discrete problems such 
as path planning, HHO provides more rapid convergence and better adaptability in continuous spaces such as 
learning rate, dropout, and neuron tuning.

In Table  10 HHO resulted in quicker convergence, lower loss oscillation, and improved precision. These 
findings confirm HHO’s ability to adjust network parameters accurately, especially when combined with LOA 
for adaptive stabilization control.

Optimizer Accuracy (%) Convergence Speed Stability (Loss Std. Dev.)

ABC 97.82 Moderate ± 0.64

GA 98.03 Slow ± 0.72

ACO 97.65 Slow ± 0.81

HHO 98.65 Fast ± 0.33

Table 10.  Small hyperparameter tuning benchmark.

 

Fig. 27.  Log loss comparison chart.
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Limitations and future scope
While the HHO-LOA-DCNN + LSTM model showed very high classification accuracy (98.75%) on standards 
datasets, there are inherent limitations influencing the model’s performance that must be acknowledged. The 
overall performance of the model is contingent upon the quality and consistency of the input CT images; thus, 
noise, differences in incidental imaging devices, and incomplete annotations may impact total accuracy of feature 
extraction. Moreover, the hybrid optimization and DL model requires heavy resources, including GPU utilization 
when processing data for both training and inference, and thus may not be suitable for implementation in real-
time or low-resource clinical settings. Future research may focus on these limitations by attempting to reduce 
the computational costs associated with the model constructs, as well as validating the robustness of the model 
across a multitude of, and more recognized, real-life datasets. To enhance classification performance while 
limiting total annotation costs in the future, further work could consider ensemble learning strategies, such 
as ensembling multiple models that were trained independently and ensembling snapshot ensembles, or using 
multiple local minima that can be captured in one training run. By ensembling diverse decision boundaries, 
it may be easier to obtain more generalized and robust models. As described in our current DCNN + LSTM 
architecture, in cases where models with differing initialization seeds or training schedules have been combined, 
we expect to obtain, in cases of borderline nodules, greater predictive consistency and reduced variance, if the 
models are ensemble.

Comparative analysis with literature works
The developed HHO-LOA-DCNN-LSTM model fares well in relation to most of the other currently available 
literature-presented models. Anum Masood et al. (2019)37 achieved 98.51% accuracy with 3D CNN utilizing 
Median Intensity Projection, yet their method relied heavily on preprocessing, which causes complexity and 
susceptibility to input quality. Sori Worku Jifara et al. (2019)38 have attained an 87.8% accuracy using a DCNN 
method but were constrained by dataset diversity. Combined DenseNet with AdaBoost and yielded encouraging 
performance on fluorescence images but could not be extended to other imaging modalities. On the contrary, 
our optimized model HHO-LOA was 99.65% accurate, 99.75% precise, and 98.89% F-score, surpassing the best 
literature-suggested measures on all test metrics. Furthermore, our model also significantly lowers computational 
time (150.1  s) and CPU usage (4.64%) compared to existing work, thus further substantiating its real-world 
feasibility and deployment potential. These findings amply demonstrate the robustness, generalizability, and 
real-time practicability of our proposed approach.

Overfitting
To evaluate the sensitivity of the model to the LSTM architecture, we completed a parameter sweep varying the 
number of LSTM units (50, 75, 100, 125, 150) and dropout values (0.1 to 0.5 by 0.1 increments). We found best 
accuracy at 100 LSTM units and 0.2 dropout selected by the hybrid HHO + LOA optimizer. Moreover, accuracy 
was stable within ± 1.1% for units values of 75–125, and within ± 0.8% for dropout values from 0.2 to 0.4, thereby 
it suggested moderate robustness to hyperparameter changes. The model resulted in minor overfitting for larger 
unit and low dropout values (e.g., 150 units; 0.1 dropout), which justifies the utility of the optimizer for selecting 
values.

The proposed HHO-LOA-DCNN-LSTM model is very efficient because of the two-stage metaheuristic 
optimized hybrid deep neural network architecture. The DCNN extracts spatial and textural features from CT 
scans, and the LSTM detects long-distance dependencies between slices, resulting in a descriptive lung nodule 
representation. Horse Herd Optimization (HHO) and Lion Optimization Algorithm (LOA) jointly optimize 
hyperparameters and model weights to enhance accuracy and convergence stability. This synergy provides a 
performance better than that of current state-of-the-art models in the form of enhanced accuracy (99.65%), 
reduced CPU utilization (4.64%), and shorter inference time (150.1s). The method generalizes to multiple public 
benchmarks and external groups well and gets augmented with sampling and augmentation in the solution for 
class imbalance. The ablation study also informs us about the crucial contribution made by each of the modules 
involved and the success and stability of the proposed method in classifying lung cancer.

 Conclusion
The HHO-LOA-DCNN-LSTM model demonstrates superior efficiency and scalability in LCC by integrating 
DCNN for feature extraction and LSTM for sequential pattern recognition. Through HHO-LOA optimization, 
key hyperparameters such as LSTM units (100), batch size (32), learning rate (0.0001), dropout rate (0.2), and 
weight decay (0.01) are fine-tuned, ensuring stable convergence, reduced overfitting, and improved generalization. 
Compared to conventional models, the HHO-LOA-DCNN-LSTM achieves the highest classification accuracy 
(99.65%) while maintaining the lowest computational cost, with an execution time of 150.1 s and CPU utilization 
of only 4.64%. Additionally, preprocessing techniques, such as pixel thresholding and edge detection, enhance 
lesion detection by isolating tumor regions and filtering noise, further improving classification performance. The 
model’s ability to balance accuracy, computational efficiency, and resource utilization makes it highly scalable 
for large-scale lung cancer diagnosis using CT scans. Its superior performance across different performance 
matrices establishes HHO-LOA-DCNN-LSTM as a highly reliable and efficient DL-based diagnostic tool for 
early lung cancer detection. The evaluation using ROC, precision-recall curves, and corresponding AUC values 
and confidence intervals, offers further evidence that the proposed model offers a good and reliable approach 
in the context of lung cancer classification, which demonstrated very good or excellent model performance 
in distinguishing nodules of differing malignancy. Future work can explore high-dose CT imaging, ensemble-
based FS, and advanced loss functions to further enhance performance in handling imbalanced datasets.
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Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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