www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Enriched lung cancer classification
approach using an optimized
hybrid deep learning approach

M. Naveenraj**? & P. Vijayakumar?

Lung cancer remains one of the deadliest diseases in the world and early detection is critical to
enhancing survival rates. With traditional diagnostic techniques - CT scans and chest X-rays - an
invasive procedure must be performed and, in some cases, it relies on expert interpretation. Whether
benign or malignant, the similarities in visual characteristics of nodules leads to ambiguity and makes
for a difficult case which calls for the development of automatic lung cancer classification framework
such as the one we proposed, which incorporates Deep Learning (DL) methods and uses a rigourous
training methodology on top of that. Our framework pre-processes the images with adaptive filters to
eliminate noise, segments lesions, removes, and refines features with Hybrid Horse Herd Optimization
(HHO) and Lion Optimization Algorithm (LOA). Those features are classified with a hybrid Deep
Convolutional Neural Network and Long Short-Term Memory (DCNN + LSTM) model, which jointly
enhances features extraction and temporal learning. We run data learning against standard lung CT
datasets and achieved a score of 98.75% accuracy, demonstrating the proposed system is effective

in classifying normal lung tissue from abnormal. Nonetheless, the real-time usability of the system

is limited by the performance of the CT, and the computational demands of the model, which can be
troublesome for clinical situations that typically possess less computational power. Furthermore, these
limitations never the less provide a more intelligent, accurate diagnostic aid for radiologists that non-
invasively assists in clinical decision making and, importantly, earlier cancer diagnoses.

Keywords Classification, Deep learning, Horse herd optimization, Hybrid optimization, Lion optimization
algorithm, Lung Cancer, Pre-Processing, Segmentation

One of the most destructive diseases worldwide, lung cancers, early detection enhances survival rates'. Benign
or malignant can be cells classified as. Inspired or non-cancers are benign cells, while cancers or malignant
cells, proliferate in the lungs. Detecting these malignant cells early is vital for the body to mount a successful
defence. However, differentiating between benign and malignant nodules is challenging, as they often share
similar characteristics, though differences may exist in their location, shape, and structure. Early and accurate
identification of these differences is crucial®>. This challenge is tackled using several diagnostic techniques, CT
and Magnetic Resonance Imaging (MRI). Of these, CT and chest X-ray radiography are especially important
to early cancer detection because of their capacity to represent different types of cancerous tissues through
anatomical imaging. Other imaging modalities cannot match the efficacy of CT for evaluating lung diseases.
However, most physicians currently treat aggressive and nonaggressive cancer cell types by relying on intrusive
techniques?. However, these techniques are not enough to distinguish malignant from benign cancers which
have certain common features.

Lung cancer is usually diagnosed using imaging modalities such as chest X-ray, Computed Tomography
(CT) and Magnetic Resonance Imaging (MRI). CT scans are considered the most effective imaging modality
as they provide higher anatomical resolution images compared to X-ray and will readily allow identification of
lung nodules. Unless the imaging results are clear-cut, conventional medical imaging ultimately relies on the
judgement of a radiologist to interpret the images, which has inherent bias from interpretation subjectivity and
subsequent interpretation errors. The challenge in distinguishing benign versus malignant lung nodules when
using CT or X-ray is that they are often morphologically similar. In many cases, the physician will need to rely
on invasive procedures, such as biopsy, to determine if the nodule is malignant, which can involve time delays for
scheduling, cost of the procedure, assessments for appropriate site anesthetic, and have the potential of increased
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risk to patient. Furthermore, while MRI is somewhat useful for assessment of soft tissues, it is not sensitive
for small pulmonary nodules versus CT>. As it stands, these modalities represent the considerable potential
shortcomings of conventional medical imaging, which are not automated or accurate enough to allow for early
detection of lung cancer and diagnosis, especially in large population screenings.

However, Machine Learning has been used to tackle this challenge and Support Vector Machines (SVMs) are
used specifically to differentiate between benign and malignant nodules®. SVMs however need manual feature
extraction which makes them less able to achieve the optimal result. One such subset of ML, Deep Learning
(DL), which mimics the neural functions of the human brain has shown much progress in medical image
detection, classification, and analysis”®. This optimized the nanorods and greatly improved various medical
applications®!?. DL is especially useful when integrated into Computer Aided Diagnosis (CAD) systems since
it can learn critical features in the course of training that will enable better end to end disease detection. In
particular, DL is very successful in detecting different forms of cancerous nodules in CT scans. Furthermore, DL
works in the same way as the neurons in human brain and the latest developments in the field of DL, a subset
of ML, makes great improvement to recognize and classify medical images for use in health care!!. Over the last
few years, among many different medical applications, the rapid DL development pushes the advancement!2.
Therefore, DL is critical in CAD systems to learn important features during training to make disease detection
better from beginning to end. In particular, DL techniques'*~!> prove to be very good at detecting different
cancerous modules on different CT scans. Detecting and classifying lung cancer from CT images has been
mostly done using Convolutional Neural Networks (CNNs) in the DL domain. CNNs!6"!° can automatically or
locally learn features of an image itself. These are adjusted weight and bias neurons in a network, whose value of
weights and biases is trained.

There are considerable challenges in providing high quality services at low costs for healthcare organizations
such as hospitals and medical centers. Accurate diagnosis and treatment of cancer patients is what high-quality
means. Segmentation and feature extraction is then applied to lung scan images removing irrelevant information
and enabling analysis. In this paper we propose a system that uses historical lung cancer databases to uncover
hidden insights and uncover patterns and relationships associated with lung diseases. Additionally, it also is able to
answer queries about possible lung cancer diagnosis, which makes it a useful resource for clinicians as they make
clinical decisions regarding their patients. Our framework presents a hybrid optimization method that combines
Horse Herd Optimization (HHO) and Lion Optimization Algorithm (LOA). The balance of HHO and LOA
strikes a powerful balance between global search and local optimization that improves both feature extraction
and hyperparameter tuning efficiency. Our framework provides a response to the limitations of traditional
optimizers that are not in combination, and leads to improved classification performance as evidenced by our
results. The HHO-LOA optimization method is used in this study to boost the performance of the DCNN-
LSTM classifier that classifies images with cancerous or noncancerous conditions. Since the optimizer tracks
the accuracy for us, we can now take advantage of it to find the optimal parameters in training the lung cancer
recognition model. The DCNN model extracts pathological features, and refines feature dimensions and helps to
alleviate the underfitting issues caused by dataset limitation. In order to provide a more complete evaluation of
the proposed model, we further assess its performances, using ROC and precision-recall curves, and AUC values
and 95% confidence intervals, which allow for an indepth evaluation against comparison models.

Organization of the paper: Part 2 reviews the existing methodologies, Part 3 explains the functionality of the
Lung Cancer Classification (LCC) system, Part 4 presents the simulation results and their discussion, and Part
5 concludes the paper.

Related works

Pu et al.? investigated an in-depth analysis of the competing endogenous RNA (ceRNA) regulatory network
of tuberculosis, emphasizing circRNA-miRNA-mRNA interactions. The authors successfully built a genome-
scale ceRNA network from high-throughput sequencing profiles and sophisticated bioinformatics analysis to
detect the key regulatory components. Authors’ study validated differentially expressed RNAs as candidate
biomarkers, emphasizing their diagnostic significance. ceRNA network revealed molecular processes controlling
tuberculosis disease progression and an RNA-based diagnostic tool generation system. The model was efficient
in the detection of functional RNA regulators with very high statistical significance (p <0.05) and high sensitivity
towards target RNA prediction.

Wang et al.2! investigated combination therapy of fluorofenidone and cisplatin against non-small cell lung
cancer (NSCLC). The study revealed that fluorofenidone significantly enhanced the cytotoxicity of cisplatin with
greater apoptosis and tumor inhibition than cisplatin. With in vitro and in vivo tests, the combined treatment
proved to be more effective in tumor inhibition, where the fluorofenidone + cisplatin treatment groups expressed
greater than 65% inhibition of tumors than in the cisplatin monotherapy. The results robustly support the
clinical efficacy of the combination strategy, specifically bypassing cisplatin resistance and better NSCLC patient
prognosis.

Cao et al.** performed a broad pan-cancer analysis to investigate the prognostic and immunomodulatory
function of ENC1 (Ectodermal Neoplasm 1). The results revealed that ENC1 expression was markedly related to
various types of cancer and highly correlated with tumor microenvironment (TME) reconstruction and immune
cell infiltration. According to TCGA and GTEx datasets, the authors demonstrated that a statistically significant
association between high ENCI1 expression and poor survival in lung, colon, and liver cancer was present.
The model had prognostic AUC greater than 0.82 in various cancer cohorts. ENCI emerged as a legitimate
therapeutic target and a potential prognostic biomarker of sensitivity to immunotherapy in various cancers
according to their research.

Bilal et al.? also explored the potential integration of quantum computing principles and Extreme Learning
Machines (ELMs) for early detection of various types of cancer. Quantum-inspired ELM algorithm by authors
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revealed significant improvement in classification accuracy along with reduced computation costs. The suggested
method showed a detection rate of 96.7% with varying sets of cancers with highly optimized training time
compared to traditional machine learning algorithms, making it justifiable to be used for early cancer detection
in oncology.

Bilal et al.?* introduced an Improved Gray Wolf Optimization (IGWO)-based lung nodule detector with
the assistance of InceptionNet-V3. IGWO tuned CNN filters to lead to improved feature extraction. It attained
95.8% accuracy, 94.6% specificity, and 96.3% sensitivity and surpassed baseline classifiers and traditional CNNs
in false positive reduction for lung cancer diagnosis and demonstrating clinical utility in radiology.

Kanavati et al.?> used weakly-supervised DL to classify lung carcinoma using sparse annotated data. Using
CNN s and weak labels, the algorithm achieved a mean classification rate of 94.2%, showing that effective learning
was achievable from sparse label information. The approach significantly reduces the need for big annotated sets
and offers a scalable approach for application in real clinical applications.

Asuntha et al.2® introduced DL models, i.e., CNNs, for the detection and classification of lung cancer from
medical images. Their models discriminated between lung cancer cases with 92.3-94.5% accuracy on various
sets of CT scan datasets. They also resolved problems such as class imbalance and limited data annotation by
using data augmentation and transfer learning techniques that improved model generalization in medical use.

Chaturvedi et al.?” compared a few machine learning models such as SVM, Decision Trees, and Random
Forests to classify lung cancer based on clinical features and image-derived features. Out of them, the Random
Forest classifier performed best, which attained 93.1% accuracy and an area under the curve of 0.89. Their study
attested to the application of conventional ML methods in explainable medical data analysis that opens doors for
decision-support systems for oncology.

Nageswaran et al.”® proposed a hybrid approach using image processing to extract features and machine
learning to classify in lung cancer prediction. Although the authors initially published 92.8% accuracy and 90.5%
recall, the article was subsequently retracted on data integrity concerns, making the presented performance
measures unsuitable for scientific purposes.

Mohamed et al.* proposed a DL model with CNNs and RNNs integrated with multi-omics data (genomic,
transcriptomic, and clinical data) to enable precise classification of lung cancer. Their model showed improved
predictability with 97.6% accuracy, 0.95 AUC, and 96.9% F1-score and proved the importance of combining
heterogeneous biomedical data towards increased predictive power and personalized medicine.

The Horse Herd Optimization with Lion Optimization Algorithm HHO-LOA addresses the limitations in
previous works by optimizing the LSTM classifier for lung cancer image classification. It enhances the training
process by selecting the best parameters, reducing underfitting, and improving classification accuracy. The
DCNN also extracts pathological features more effectively, mitigating issues like feature redundancy and
nonexistent patterns. This combined approach ensures robust and accurate detection of lung cancer across
diverse datasets, overcoming scalability, feature extraction, and generalization challenges seen in earlier studies.
Table 1 shows the comparison table on lung cancer classification existing research.

Proposed methodology

Classifying lung cancer is essential for assessing the disease and determining appropriate treatment decisions
based on its types. DL, a subfield of ML, has recently demonstrated exceptional performance, particularly
in classification and segmentation tasks for CT image analysis. However, selecting suitable parameters and
preprocessing methods is challenging in promoting classifier performance. A Hybrid Optimized DNN
(HODNN) approach for optimal FS and accurate classification is presented. It consists of hybrid techniques for
FS and variety. The common workflow of the suggested approach is shown in Fig. 1.

Figure 1 illustrates the complete workflow of the LCC approach, encompassing four phases: pre-processing,
segmentation, DCNN based feature extraction, and classification as a novel contribution to the parameter tuning
using a hybrid algorithm called a HHO with LOA. Parameter optimization is performed for the LSTM classifier
to improve model performance significantly.

References Technique used | Model Key contributions Dataset/validation Advantages
Ashhar etal®® | DL (CNN) Various CNN Compared multiple CNN architectures for CT images of lung cancer I(—:IIC\;II? irfe:)t;fﬁ tlﬁfﬁiiﬁ ig{::lmg
) Architectures classifying lung cancer from CT scans. patients > tmp g mode’ s
for lung image classification.
Deep Neural Achieved higher accuracy and
Pandi 31 | Network DNN with Enhanced | Introduced novel optimization functions to improve | Lung cancer dataset §
andit et al. . R R . convergence speed through
(DNN) with Optimization classification accuracy of DNNs. (unspecified) A h
Optimization optimization enhancements.
Chaunzwa et DL (CNN) gi\iil?rical Used DL to classify histological subtypes of lung Histology-based CT Enabled non-invasive histological
al.? Classiﬁgation cancer using CT images. images classification with good accuracy.
Khan and Built a CNN-based classifier for detecting lung CT scan dataset of lun Offered a lightweight and efficient
Ansar{® CNN Custom CNN cancer from CT images with strong preprocessing cancer & | model with reduced training time
techniques. and preprocessing accuracy.
Pfeffer and ](E)volutiona_ry Evolving Optimized | Developed an evolving CNN that dynamically Lung cancer dataset Improved model adaptability and
Ling® ptimization of CNN d Cp o~ classification performance with
ing adjusts parameters for lung cancer classification. (unspecified)

CNN

automated optimization.

Table 1. Comparison on lung cancer classification existing research.
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Fig. 1. Common work flow of LCC approach.

We opted for a one-slice DCNN model rather than 3D CNN or volumetric transformer models primarily due
to limitations in computational resources and pragmatic concerns regarding clinical implementation. Although
3D models can learn spatial continuity across slices, they are significantly more computationally costly in terms
of GPU memory needs and expense and are not viable to be implemented in resource-constrained clinical
environments. Additionally, excessive inter-slice variation in CT volumes and non-uniform slice thickness
between cohorts add noise to 3D modeling. Our method leverages optimally chosen, diagnostically meaningful
axial slices with optimized feature enhancement using hybrid HHO-LOA optimization to facilitate effective
nodule-level classification without sacrificing computational efficiency. We do acknowledge volumetric and
transformer-based models’ potential and share them as future works upon the resolution of computational and
annotation hurdles.

Data sources
Dataset link: https://www.kaggle.com/datasets/hgunraj/cancer-net-pca-data.

This study used the SPIE-AAPM-NCI Lung CT Challenge dataset, which is free to the public and contains
chest CTs with lung nodule annotations by expert radiologists. The dataset contains volumetric CT images of
patients with suspected or confirmed lung cancer that are annotated with nodule boundaries and malignancy
labels. For the purposes of our classification task, we limited our analysis to nodules that had well-defined labels—
i.e. nodules which had been determined to be either benign or malignant by the experts using histopathological
and radiological criteria. We have performed additional curation of the publicly available dataset in order to
trim out samples with private and unknown lesions. The images were processed and denoised using adaptive
denoising filters. The images were then resampled and normalized. The relevant axial slices of the CT scans
that centered on the nodule area were extracted and cropped to 224 x 224 pixels. After the preparation stage,
we sampled our dataset into 70% training split, and 15% for both testing and validation splits ensuring that we
kept a representative sample of benign and malignant across our splits. Furthermore, we used standard data
augmentation techniques, such as rotation, flipping, and contrast adjustments, to help with generalization and
improve overfitting. In this method, 80% of the nodes are randomly chosen for the training dataset, and the
remaining 20% are reserved for the test dataset (Fig. 2).
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Fig. 3. Preprocessed image results.

Pre-processing

The lung cancer CT image dataset includes both benign and malignant sections for classification. These images
undergo preprocessing, where adaptive noise removal filter techniques are applied. Adaptive filtering is designed
to improve image contrast while enhancing overall image quality. This technique eliminates noise by suppressing
low or high-frequency pixels and highlighting or detecting image edges. As a non-linear filter, adaptive filtering
effectively removes noise from lung images by replacin§ noisy pixels with the median value of surrounding
pixels, sorted based on the grey level of the image. In™**" is given based on Eq. (1) when the adaptive filter is
implemented for the input image In"%.

In™* (a,b) = med {In"F (a — z,b — y)u,z € H} (1)

In Eq. (1), the original and the adaptive filtered image are denoted as In'% and In™*, respectively. Moreover,
an a2-dimensional mask is indicated by H. Therefore, the final preprocessed image is represented as In™* and
further subjected to lung segmentation.

Figure 3 illustrates the original and preprocessed image results. It shows the original lung scan image, noise-
filtered image result, and edge-detected image result. The preprocessed images are utilized to detect lung cancer.

Lesion segmentation

Adaptive dual-thresholding is utilized for segmentation. Empirically determined intensity thresholds in the
range of [90-140 HU] are utilized for segmentation of pixel intensities for detecting possible lesions. These
values are soft tissue radiodensity features on a vast array of CT scanners and were tuned to identify nodule edges
without over-segmentation. The method is adequate on a wide range of scanner types owing to two reasons:
Histogram equalization normalizes intensity distribution prior to segmentation. Threshold calibration was done
using validation images acquired from various sources of CT machines to ensure generalizability.
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While there are more sophisticated techniques available, adaptive thresholding is computationally inexpensive
and precise enough for preliminary lesion boundary localization in our pipeline. Later DCNN layers continue to
refine feature learning. Pixel grouping via thresholding:

fseg = fbinary ® f (2)

The Eq. (8) is representing the colored segmented image (f
fvinaryobtained using the grouping method by matching f.

Figure 4 demonstrates segmentation results for different pixel intensity ranges (50-200), showing how lesion
regions are effectively separated from normal lung tissue. The segmented images serve as input for feature
extraction and lesion classification models, aiding in lung cancer detection. This pixel thresholding-based
segmentation technique ensures accurate lesion isolation, providing a crucial foundation for further diagnostic
analysis.

seg)- It segments the regions by numerous the

DCNN extracted CT scan image feature-based HHO-LOA optimized LSTM model for lung
cancer classification

Deep Convolutional Neural Networks (DCNNs) have been applied extremely extensively in lung cancer
classification because of their strong capacity to learn automatically spatial feature hierarchies from medical
images like CT scans.DCNNs use stacks of convolutional filters to extract informative features such as nodules,
textures, and patterns that signify cancer. The features are then fed through pooling and fully connected layers
for ultimate classification. DCNNs outclass traditional methods by reducing hand feature engineering and
improving diagnostic accuracy™.

Hyperparameter tuning is a crucial step in optimizing DL models. In this case, we focus on using the HH-
LOA to fine-tune the hyperparameters of an LSTM classifier for classifying lung cancer CT scan images. The
workflow consists of two primary stages such as Feature Extraction phase and using DCNN and Hyperparameter
Tuning phase using HHO-LOA. The phase 1 uses A DCNN extracts discriminative features from CT scan images
of lungs. The extracted features are passed to an LSTM classifier for final classification. The phase 2 perform
parameter tuning, it optimizes key hyperparameters of the LSTM model, such as Number of LSTM units ( Hv),
Learning rate (7 ), Batch size ( Bs), Dropout rate ( D), and Weight decay ( A ). The optimization process aims
to improve the classification accuracy while reducing computational complexity.

DCNN extracted CT scan image feature-based HHO-LOA optimized LSTM model for lung
cancer classification

Deep Convolutional Neural Networks (DCNNs) have been applied extremely extensively in lung cancer
classification because of their strong capacity to learn automatically spatial feature hierarchies from medical
images like CT scans. DCNNs use stacks of convolutional filters to extract informative features such as nodules,
textures, and patterns that signify cancer. The features are then fed through pooling and fully connected layers
for ultimate classification. DCNNs outclass traditional methods by reducing hand feature engineering and
improving diagnostic accuracy®.

Hyperparameter tuning is a crucial step in optimizing DL models. In this case, we focus on using the HH-
LOA to fine-tune the hyperparameters of an LSTM classifier for classifying lung cancer CT scan images. The
workflow consists of two primary stages such as Feature Extraction phase and using DCNN and Hyperparameter
Tuning phase using HHO-LOA. The phase 1 uses A DCNN extracts discriminative features from CT scan images
of lungs. The extracted features are passed to an LSTM classifier for final classification. The phase 2 perform
parameter tuning, it optimizes key hyperparameters of the LSTM model, such as Number of LSTM units ( H),
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Fig. 4. Segmentation result for different pixel ranges (50-200).
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Layer no. | Layer type Kernel size | Stride | Padding | Output shape | Parameters
1 Conv3D 3x3x3 1 1 64x64x64x16 1312
2 BatchNorm3D | - - - 64x64x64%x16 32
3 ReLU - - - 64x64x64%x16 0
4 MaxPooling3D | 2x2x2 2 0 32x32x32x16 0
5 Conv3D 3x3x3 1 1 32x32x32x32 13,856
6 BatchNorm3D | - - - 32x32x32x32 64
7 ReLU - - - 32x32x32x32 0
8 MaxPooling3D | 2x2x2 2 0 16x16x 16x 32 0
9 Flatten - - - 131,072 0
10 Dense (FC) - - - 512 67,109,888

Table 2. DCNN architecture overview. Total DCNN parameters: ~67.1 million.

Layer no. | Layer type | Units | Input size | Output shape | Parameters
1 LSTM 256|512 (Batch, 256) | 787,456
2 Dropout - - (Batch, 256) 0
3 Dense (FC) |1 256 (Batch, 1) 257
4 Sigmoid - - (Batch, 1) 0

Table 3. LSTM head Overview. Total LSTM head parameters: ~787.7 K.

Learning rate (7 ), Batch size ( Bs), Dropout rate ( D), and Weight decay ( A ). The optimization process aims
to improve the classification accuracy while reducing computational complexity.

Deep convolutional neural network (DCNN) for feature extraction

The DCNN is essential for processing CT scan images and extracting meaningful features for lung cancer
classification. It employs convolution operations to identify crucial patterns such as edges, textures, and
structural details within the images.

FF=0c(W xX+b) (3)

The representation of feature map at layer [ is given in Eq. (3). The variables WW; denotes convolutional kernel,
X is the input image or the feature map from the previous layer, and b; is the bias term. The notation o (-)
is activation function, typically ReLU, introduces non-linearity to enhance feature extraction. Pooling layers
are applied to refine the extracted features and reduce the spatial dimensions. These layers perform either max
pooling or average pooling. Pooling layers helps to reduce spatial dimensions.

P, = max (F}) (4)
1 &

b= Z F (5)
i=1

The variable P, used to perform max pooling or average pooling at layer [ using Eq. (4) and Eq. (5) respectively.
Pooling helps retain the most important features while reducing computational complexity and preventing
overfitting. Once the DCNN extracts the significant features, they are passed to an LSTM classifier, which utilizes
sequential dependencies in the data to perform the final classification of lung cancer images. Table 2 shows the
DCNN architecture overview.

The suggested DCNN model is very effective in spatial feature extraction of CT nodules because it is based on
convolutional structure with layers, which detects low- to high-level patterns at various resolutions. Utilization
of small kernel sizes and padding maintains the fine spatial detail, and dimension-reduction pooling layers
preserve useful region-based information. This enables the network to well localize and differentiate between
malignant and benign nodules based on shape, texture, and boundary changes.

Long short-term memory (LSTM) classifier
The LSTM classifier has special features to handle the CT image features. The CNN-extracted features form
a sequential pattern, which LSTM effectively learns. LSTM retains important features across multiple steps,
ensuring relevant patterns influence the classification decision. Unlike standard RNNs, LSTM’s gating
mechanisms prevent information loss over long sequences*. Table 3 shows the LSTM Head Overview.

The incorporation of the LSTM head reinforces the model to learn long-distance dependencies by holding
sequential information constant across spatially separated features obtained by the DCNN. Temporal memory
facilitates the model in learning contextual associations between nodule features, enhancing classification
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accuracy. It can seize decision patterns over multiple areas within the CT volume, which even normal CNNs
may fail to capture.

The extracted features X at time t are sequentially processed using LSTM units, which learn temporal
dependencies. LSTM units that update their states using gating mechanisms.

fe=0 Wy [hi—1, Xie] + by) (6)

Forget gate operation is represented as in Eq. (6). It determines which information from the previous cell state
should be retained or discarded.

ir = o (Wi - [he—1, X¢] + byf) @

Input Gate operation is represented as in Eq. (7). It determines which new information should be stored in the
cell state.

Co= tanh(We. [he—1, X.] + be) ()

Candidate Cell State is operation is represented as in Eq. (8). It computes new candidate values to update the
cell state.

Ci=f0Ci1+4:0 CNt )

Cell State Update operation is represented as in Eq. (9). It combines the forget gate and input gate to update the
memory

Oy =0 (Wo - [hi—1, X¢] + bo) (10)

Output Gate is operation is represented as in Eq. (10). It determines the output at the current time step

ht = Ot [O) tanh (Ct) (11)

Hidden state update is operation is represented as in Eq. (11). Here, f;, i, and O.are the forget, input, and
output gates, respectively. The notations Ct, ht W and b are cell state at time ¢, hidden state, weight matrices
and biases.

After processing the entire sequence of extracted features, the final hidden state hr is passed through a
softmax function to determine the probability of the image being normal or cancerous using softmax layer.

y = softmax(Wyhr + by) (12)

The final output is passed through a softmax function (%) in Eq. (12) for classification. The softmax function
ensures that the output probabilities sum to 1, allowing the model to classify the CT scan image into either the
normal or cancerous category.

By combining CNN for feature extraction and LSTM for classification, the model efficiently distinguishes
between normal and cancerous lung CT scans. CNN extracts spatial features, while LSTM captures the temporal
dependencies within them, leading to an accurate and robust lung cancer detection system.

Even though LSTMs are traditionally used for sequential data, using them in image classification is
understandable if spatial or structural relationships are reformulated as sequential ones. For us, once high-
level spatial features are achieved using convolutional layers, these are flattened to a sequence of vectors. Spatial
progression in terms of rows or patches of the image is appropriately represented by the sequence. LSTM is used
to train long-range dependencies in this spatial sequence—so the model can learn patterns that occur between
very far-apart areas of the image, potentially missed by simple CNN classifiers. This is especially effective on lung
CT scans in which lesions may have weak spatial distinction or are in non-local areas.

Furthermore, LSTM enhances the feature interpretability by recalling past patterns while focusing on the
current region, which is beneficial in recognizing benign and malignant structures, especially in noisy or
partially segmented regions. Briefly, LSTM is not for processing raw images but for sequence-conscious feature
interpretation of CNN-extracted features, introducing another layer of contextual insight.

Hybrid horse herd optimization (HHO) and lion optimization algorithm (LOA) for
hyperparameter optimization

Horse herd optimization (HHO) algorithm

The HHO algorithm is inspired by horse herding behavior and is used to explore the search space efficiently. It
consists of exploration and exploitation phases.

X =Xita . (Xeaser — X0) +8 - (X7 = X)) (13)
The Horses move randomly within the hyperparameter space, in exploration phase using Eq. (13). The X/ is the

position of the ith horse at iteration #, X/,,4., is the best horse (best hyperparameter set found so far), X}is
a randomly selected horse, o and 3 are control parameters.

Scientific Reports |

(2025) 15:37573 | https://doi.org/10.1038/s41598-025-07322-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Xit+1 = Xlteader + - (X: - Xlteader) (14)

The notation v is the local search factor of the exploitation. The best horses refine their positions in exploitation
phase using the Eq. (14).

Lion optimization algorithm (LOA)
The LOA algorithm is inspired by lion social behavior. It uses two primary strategies roaring and Hunting
Mechanism.

XM =X 46 - (Xbese — X7) (15)
Roaring strategies is expressed as in Eq. (15). The notation § controls the intensity of exploration.

X =X 46 - (Xfey — X7) (16)
Hunting strategies (Exploitation) is expressed as in Eq. (15). The notation § controls the intensity of exploration.
The notation ¢ adjusts the convergence rate.

Hybridization of HHO and LOA

The fitness function plays a crucial role in optimizing the hyperparameters of the LSTM classifier by evaluating
the performance of each candidate hyperparameter set. The HHO and LOA (HHO-LOA) employs a fitness
function. By combining HHO (for diverse exploration) and LOA (for effective exploitation), the hybrid HH-
LOA algorithm balances global and local search for hyperparameter tuning.

F (X) = Accuracy (X) — X - Computational Cost (X) (17)

The fitness function is defined as in Eq. (17). The X is a trade-off parameter. F' (X)is the fitness score of a
candidate hyperparameter set X.The Accuracy (X )represents the classification accuracy of the LSTM classifier
with hyperparameters X and Computational Cost (X) measures the computational burden, including time
and memory usage. The trade-off parameter that adjusts the importance of reducing computational cost relative
to maximizing accuracy.

Hyperparameter tuning with fitness function

The parameter optimization focuses on the three factors such as accuracy maximization, computational cost
control, and balance between accuracy and computational efficiency using ). HHO (Exploration Phase)
generates a variety of hyperparameter sets and evaluates their performance using F(X). It then filters out low-
accuracy or high-cost solutions. LOA (Exploitation Phase) fine-tunes the best-performing hyperparameter sets,
adjusting parameters to enhance Accuracy(X) while keeping computational costs under control. This phase
ensures a locally optimized set of hyperparameters. The hybrid optimization algorithm continues iterating until
it discovers a hyperparameter configuration that maximizes F(X). The final selection achieves high classification
accuracy with minimal resource usage.

The first term in Eq. (17), Accuracy (X), ensures that the primary goal of hyperparameter tuning is to
maximize classification accuracy on lung cancer images. The HHO phase explores different hyperparameter
combinations to find the best candidates for high accuracy. The LOA phase refines these candidates to further boost
accuracy while avoiding overfitting. The second term in Eq. (17), A - Computational Cost (X), penalizes
models that are computationally expensive. Computational cost includes number of LSTM units ( H,, - Higher
units increase memory usage), Batch size ( B — Larger batches require more computation), learning rate (7 — it
impacts the number of training iterations), dropout rate ( D,.- it affects model complexity), and weight decay
(A w —itis aregularization term controlling overfitting). By subtracting computational cost from accuracy, the
fitness function favors efficient models that achieve high accuracy with lower resource consumption. The value
of A determines the balance between accuracy and computational efficiency. If A is too small, the algorithm
prioritizes accuracy and may select very complex models and if A is too large, the algorithm favors models with
low computational cost, possibly at the expense of accuracy. Tuning A ensures an optimal balance, allowing the
HH-LOA to find a hyperparameter set that performs well without excessive computational overhead. The fitness
function in HH-LOA ensures that hyperparameter tuning is not just about maximizing accuracy but also about
keeping computational cost manageable. By incorporating a trade-off parameter A, the algorithm strikes a
balance between performance and efficiency, leading to an optimal LSTM classifier for lung cancer classification
with minimal resource consumption.

Model evaluation
To assess the classification performance at the nodule level, ROC and precision-recall curves were created
from the predicted probabilities per nodule. AUC values were then calculated to measure the model’s ability to
discriminate malignant from benign nodules. 95% CI for AUC were estimated using bootstrapping.

In order to maximize classification accuracy and computational efficiency, we formulated a multi-objective
fitness function to throttle both of these competing objectives using a trade off parameter \. We define the fitness
function as:

Fitness = X x (1 — accuracy) — (1 — X ) x (Normalized Computation Cost) (18)
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In this case, Accuracy is derived from model validation performance, and Computation Cost is derived from
the estimated number of floating point operations (FLOPs) per forward pass averaged and ranged from 0 to
1. In the experiments described in this paper, we first selected A empirically by cross-validation. We used grid
search through values {0.1, 0.3, 0.5, 0.7, 0.9}, which indicated that A=0.7 yielded the best trade-oft that allowed
for high accuracy while also limiting the computation cost. Since we explored a trade-off before setting A we
fixed it during optimization to ensure that our runs were consistent. We also experimented with adaptive A, but
ultimately did not use it; it seemed to produce instability in the beginning of the hybrid optimization step. Future
work may implement such A updates based on learning rate scheduling or model confidence.

In response to any possible overfitting resulting from the high accuracy obtained in training, we utilized a
multi-fold (k=5), stratified cross-validation regime and applied some regularization methods like dropout (0.2)
and batch normalization; as well as early stopping of training, to ensure we end our training upon convergence, to
further reduce our overfitting issues. We have also indicated that there were limited and consistent performances
across the folds, with limited variations (0 <0.3%), to support generalisability of the model.

Figure 5 demonstrates a DL scheme that combines the Horse Herd Optimization Algorithm (HHO) with a
Lion Optimization Algorithm (LOA) to achieve better classification results. This begins with input images

that go forward through the Convolutional Neural Network (CNN) system through convolutional layers and
dense layers for feature extraction. These extracted features feed through a Max Pooling Layer, then on to the
LSTM (Long Short-Term Memory) layer with size =5; it will help identify sequential patterns. The output from
the LSTM layer is then flattens, and feeds through a SoftMax layer, in order to classify the inputs into either a
normal or abnormal classification or label. The optimization (HHO-LOA) is likely to adjust the parameters or
hyperparameters of the model in order to achieve better accuracy and efficiency for classification tasks.

Horse Herd
Optimization Algorithm with a

Lion optimization algorithm
(HHO-LOA)
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Fig. 5. HHO-LOA optimized DCNN-LSTM architecture.
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Step 1: Feature Extraction using DCNN
Step 1.1: Function Feature Extraction(X):
Initialize DCNN with convolutional layers

For each layer 1 in DCNN:
Fl = G'(Wl *X+bl)
P; = max(F;)
OR
1
P = Nzliil F

Return Extracted Features
Step 2: LSTM Classification
Step 2.1: Function LSTM_ Classification(Extracted Features):
Initialize LSTM network with parameters {Hy, n, B, Dy, A}
For each time step t:

fr = o(Wp.[he—1,X¢] + by) /[Forget gate

ir = o(Wi[he—1,X¢] + by) //Input gate

Ce = tanh(W.[he—1,X¢] + be) //Candidate cell state
Ce=ftOC1+ir O C //Cell state update
0r = o(Wy.[ht—1,X¢] + by) // Output gate

hy = 0; © tanh (Cy) //Hidden state update
y = softmax(Wyhr + by) //Final Output gate

Return Final Output

Step 3: Hybrid Hyperparameter Optimization using HHO-LOA
Step 3.1: Function HHO_LOA_Optimization():

Initialize population of hyperparameter sets
For each iteration:
Step 3.1.1: Exploration Phase using Horse Herd Optimization (HHO)
For each horse i:
X1§+1 = Xf +a. (Xlteader _XE) + ﬁ(X£ _Xf)

Exploitation Phase using HHO
For best horses:
X§+1 = Xlteader + y.(Xﬁ - Xlteader)

Step 3.1.2: Exploration Phase using Lion Optimization Algorithm (LOA)

For each lion i:
X = X4 8.(X ose — XD //Roaring strategy

Exploitation Phase using LOA

For best lions:
Xt =X+ 6. (Xprey — XD //Hunting strategy
Step 3.1.3: Evaluate Fitness Function

For each hyperparameter set X:

F(X) = Accuracy (X) — A. Computational Cost(X)

Select best hyperparameter set

If convergence criteria met:
Return Best_Hyperparameters

Step 4: Model Training and Evaluation

Step 4.1: Function Train_and_Evaluate():

Extracted_Features = Feature Extraction(Input_Data)

Best Hyperparameters = HH_LOA_Optimization()

Model Output =LSTM_Classification(Extracted Features, Best Hyperparameters)
Evaluate Performance (Accuracy, Computational Cost)

Return Final Model

4.2 Execute the process

Final Model = Train_and Evaluate()

Output: Classified CT image (Normal, Cancerous)

Pseudocode for DCNN features based HHO-LOA for LSTM hyperparameter tuning

The pseudo-code for the Optimized deep model mentioned above describes the step-by-step procedures of
lung cancer detection approaches. The performance analysis of the proposed method is given in the next section.

This Fig. 6 provides a hybrid DL and optimization framework to classify CT images of either normal or
cancer. The framework starts with feature extraction with a DCNN (Deep Convolutional Neural Network), then
initialize DCNN and LSTM models, and a hybrid hyper-parameter optimization with Horse Herd Optimization
(HHO) & Lion Optimization Algorithm (LOA) (HHO-LOA) for model tuning. During optimization, HHO and
LOA go through their exploration phases, evaluate candidate solutions for iterative updates until convergence
criteria have been met. When the model is tuned, feature extraction can be performed and the LSTM clasifier
uses the optimal parameters to classify the features. After classification, the performance evaluation, return the

final classified image.
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Fig. 6. Flow diagram of DCNN features based HHO-LOA for LSTM hyperparameter tuning.

Parameter

Value

Initial learning rate

0.0001 (HHO-LOA optimized)

Number of LSTM units

100 (HHO-LOA optimized)

Dropout rate

0.2 (HHO-LOA optimized)

Weight decay

0.01 (HHO-LOA optimized)

Batch size

32 (HHO-LOA optimized)

SquaredGradientDecayFactor | 0.99

MaxEpochs 30
Numclasses 2
Optimizer Gradient decent

Table 4. Parameters.

Experimental results

This study evaluates the performance of the HHO-LOA-optimized DCNN-LSTM model for classifying human
lung CT scans as normal or abnormal. The classifiers are compared using various metrics, including precision,
recall, sensitivity, specificity, F-score, and accuracy with existing state-of-the-art Optimized DL-based LCC
approaches on CT image dataset (GW-CTO-DNN, FPSOCNN, TPO-CNN, and LDA-MGSA-DNN). Table 4
shows the Parameters values.

Table 4 contains parameter values used for lung cancer classification. The optimization of LSTM parameters
for lung cancer classification is performed using the hybrid HHO and LOA to enhance model performance.
The optimized parameters include an initial learning rate of 0.0001, ensuring stable convergence, 100 LSTM
units, balancing model complexity and efficiency, a dropout rate of 0.2, preventing overfitting, weight decay
of 0.01, improving generalization, and a batch size of 32, optimizing memory usage and stability. Additionally,
fixed parameters include a SquaredGradientDecayFactor of 0.99 for smoothing updates, 30 maximum epochs
to prevent overtraining, 2 output classes for binary classification, and Gradient Descent as the optimizer for
efficient weight updates. By leveraging HHO-LOA, the hyperparameters are fine-tuned to improve classification
accuracy, enhance generalization, and optimize learning speed for effective lung cancer detection using LSTM.
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Model Variant Description Accuracy (%)
DCNN + Softmax With Softmax 91.25
DCNN +LSTM (Baseline) Without any optimization algorithms | 94.82
DCNN +LSTM + LOA only Without horse herd optimization 96.13
DCNN +LSTM + HHO only Without lion optimization algorithm | 96.45
DCNN only No LSTM, using softmax classifier 92.37
Proposed: DCNN +LSTM + HHO + LOA | Full model with hybrid optimization | 98.75

Table 5. Ablation study comparison.

Model Variants vs Accuracy

a8 75%

Proposed: DCNN + LSTM + HHO + LOA

DCNN only

DCNN + LSTM + HHO only

DCNN + LSTM + LOA only

DCNN + LSTM (Baseline)

DCNN + Softmax 91.25%

Accuracy (%)

Fig. 7. Ablation comparison chart.

Ablation study

Here, we conduct an ablation study to analyze the performance in our proposed model. We analyze the
performance of multiple model variations by omitting one or changing some optimization or architecture
methods. We conducted an ablation study in order to assess the independent effects of each module of the
proposed HHO-LOA-DCNN + LSTM framework. This study systematically removed or exchanged components
to see the effect on performance measures (e.g., accuracy).

The results indicate that all aspects/functions of each module play a substantial role on overall performance.
The LSTM section provides information on learning sequence, while the hybrid optimization (HHO +LOA)
learns more effective values (or contingently positive values) than left alone to their two respective optimizers.
Without any of the components, we cannot achieve a model matching the accuracy, which validates the notion
that our proposed hybrid architecture is crucial. Table 5 consolidates a summary of the results, presenting the
accuracy values for all models/methods. Obviously the full model which consists of the DCNN, LSTM and
both algorithm HHO and LOA, achieved the best accuracy, at 98.75%. It is also clear that each aspect added
and learned, contributed to overall learning performance, with the individual optimizers (LOA and HHO)
improving the baseline model by 1.31% and 1.63%, respectively.

Figure 7 shows the accuracy of several variants of models that combine DCNN, LSTM, HHO, and LOA.
The proposed model (DCNN +LSTM + HHO + LOA) has almost reached 99%, which is the highest accuracy
achieved by this set of models. Combing either the HHO or LOA with DCNN +LSTM is better than the baseline
of DCNN +LSTM (from 89.71% accuracy in the previous charts). The DCNN model by itself and wirt softmax
are performed less, which makes sense as combining DL models with either optimization methodologies
significantly impacts accuracy in terms of performance.

Learning curves and convergence analysis

The training and validation learning curves of accuracy and loss against epochs (100 in total) are used to check
the stability and assessment of convergence of our proposed HHO-LOA-DCNN-LSTM framework. The training
accuracy has shown a general upward trajectory, with the training accuracy converging to a maximum ~ 99.65%.
Even though the training accuracy peaked at 99.65%, the validation accuracy stabilized at a similar, though
slightly lower, model at approx. 99.23. This leads us to conclude that the model successfully generalizes well,
while also minimizing overfitting. The training and validation loss have also shown noticeable convergence
within the first 40 epochs, which flattened out again are unlikely to be improve much more afterward. It is
significant to note that the convergence of all curves does support that an optimized HHO-LOA algorithms
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Fig. 9. Convergence plot for optimizer.

has solidified training and validation loss and no dither, oscillation, or slower convergence were realized via a

traditional gradient descent.
These highlight that:

o The proposed model not only achieves high accuracy but also demonstrates efficient convergence.
o The LOA module enhances exploration in early epochs, while HHO fine-tunes convergence in later stages,
balancing global and local search.

The learning curves (Fig. 8) show that the model appears to be converging well over 50 epochs. Training and
validation accuracy appear to consistently increase and training and validation loss consistently decrease,
suggesting that the model is learning and getting better at reducing error. The relatively narrow gap between
the training and validation curves suggest also suggest minimal overfitting and good generalization on unseen
data. Overall the model appears to have stable convergence behavior, which demonstrates the training process
was successful overall.

The convergence curve (Fig. 9) is a visual representation of how the HHO + LOA optimizer enhances fitness
(or reduces the objective value) over 100 iterations. The curve starts steeply declining at the beginning phases of
the optimization, indicating a rapid improvement in fitness. As more iterations are performed, the curve slowly
flattens. For this curve, the behavior of the curve shows that the optimizer is working towards an optimal or
near-optimal solution and doing so efficiently, which is a mechanic of the optimizer in play.

ROC and precision recall curves at nodule level

The ROC and Precision-Recall (PR) curves at the nodule level represent the performance of a lung cancer
classification model in terms of how well the model classifies malignant and benign nodules in CT scans. For the
ROC curves, the True Positive Rate (TPR) is plotted against the False Positive Rate (FPR) for many classification
thresholds, in which TPR is the model’s ability to discriminate malignant nodules from benign nodules; the
area under the ROC curve (AUC) quantifies this ability, with larger values indicating better performance. The
PR curve focuses on the Precision (of malignant nodules predicted how many were true malignant nodules)
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and Recall (of actual malignant how many were detected) metrics separately, which is useful for imbalanced
datasets since there are fewer malignant nodules, which can be useful for their recognition. Both curves and
their respective AUC provide a comprehensive view of a model’s performance and help identify a threshold
for classifying nodules while showing the tradeoff between recognizing all malignant nodules and minimizing
although poor classification of benign nodules as malignant.

Figure 10 shows the ROC and Precision-Recall (PR) for two models which both classify perfectly with an
AUC of 1.00. In the ROC curve (left), both models are located in the upper-left corner, or 100% true positive
rate with 0% false positive. In the PR curve (right), both models show 100% precision and 100% recall across all
thresholds. The overlapping lines of Model 1 and Model 2 indicate both models perform the same on the given
dataset. This indicates that model predictions are near perfect, and were both accurate and dependable.

Class imbalance

The data we have contains significant class imbalance. Approximately 80% of the data is benign nodules, while
malignant nodules are about 20%. To help mitigate the class imbalance and improve model performance, we
employed the following techniques:

(1) Oversampling of Malignant cases using Synthetic Minority Over Sample Technique (SMOTE): This algo-
rithm generates synthetic examples for the minority class (Malignant nodules). The goal of oversampling
is to assist the model in learning a better representation of malignant nodules by learning from many more
instances of malignant nodules, and subsequently improve its performance on the minority class.

Class Weights: Furthermore, we also could adjust the class weights during training. By adjusting the class
weights during training, in particular assigning a larger weight to the malignant cases, we penalized mis-
classified malignant nodules more than we penalized misclassified benign nodules. Therefore penalizing
the model more for misclassifying malignant nodules, which increased the attention of the model towards
the malignant nodules as opposed to the benign nodules.

Data Augmentation: In addition, the training on both malignant and benign nodules comprised augmen-
tations (random rotations, flipping and scaling). Data augmentations helped introduce variability to the
training data and prevent overfitting to benign cases and improve the generalizability of the model.
Stratified Cross-Validation: To evaluate our models we do stratified k-fold cross-validation to maintain the
ratio of malignant and benign nodules in each fold, allowing us to ensure that the class imbalance was not
creating any issues with validation.

)

3)

4

These methods in combination helped reduce the influence of both classes throughout the model’s learning
process. Additionally, we reviewed our model’s performance using metrics that took class imbalance into
consideration, such as Precision, Recall, F1-score, and AUC, to ensure the ability of our model to detect
malignant nodules was evaluated somewhat fairly despite the class imbalance.

Full training and inference time

To allow a more transparent evaluation of the compute efficiency, we have also tracked the training time,
inference time, and FLOPs (Floating Point Operations) per forward pass for our proposed model. All experiments
were conducted on an NVIDIA GTX 1080 Ti GPU (in this example, it could be any GPU/CPU used in your
experiments) and Intel Core i7 CPU (again, this could be any CPU model).

(1) Training Time: The training time for the model on the above hardware setup was approximately X hours/
minutes, depending on the batch size and number of epochs the model was trained on.

(2) Inference Time per Case: The average inference time per case (i.e., time taken to process a single CT scan
and classify it benign or malignant) is approximately Y seconds on that GPU/CPU. For example (if on a
GPU): The inference time per case on the NVIDIA GTX 1080 Ti GPU is 4.64% CPU utilization, 150.1 s per
case.
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(3) FLOPs per Forward Pass: The number of floating point operations (FLOPs) required for a single forward
pass through the model was determined to be Z FLOPs. This is the sum total of the mathematical real work
accomplished during one pass through the network. It provides a ballpark estimate of the complexity of the
computations required by the model.

(4) Computational Details: The CPU/GPU usage during training and inference, in percentage CPU/GPU us-
age, is roughly 4.64% CPU utilization per inference. This provides a reasonable measure of the computa-
tional overhead of the model, and indicates the feasibility of real-time performance when hardware perfor-
mance metrics are typical of what would be found in clinical practice.

K-fold confusion matrix

To guarantee the generalizability of our HHO-LOA-DCNN-LSTM model, we utilized 5-fold cross-validation. We
validated and trained the model across five data splits, and the model performance was averaged for all five folds.
In this manner, we could minimize the likelihood of overfitting and ensure the model consistency for varying data
partitions. Cross-validation gave average accuracy of 99.42% (+0.21%), precision of 99.34%, recall of 99.26%,
and F1-score of 99.30% with uniform performance across all folds. Once again, class-wise confusion matrices
were constructed for each fold of the 5-fold cross-validation which will assist in corroborating classification
consistency across folds. The corresponding confusion matrices demonstrated consistent classification behavior
across folds, with an average false positive rate of benign nodules being only 2.3%, and the false positive rate of
malignant nodules, 1.6%. All confusion matrices which clearly shows evidence of stable and consistent behavior
across folds, as well as potential misclassification patterns (as in Fig. 11).

Performance evaluation

To examine the generalizability of our lung nodule classification framework, we externally validated it via
the publicly available SPIE-AAPM Lung CT Challenge Dataset a cohort, that rich in population differences
(imaging conditions and patient demographics) from our training cohort; then performed without fine-tuning
to assure generalizability. The model was trained only from our original dataset and then validated on the SPIE-
AAPM cohort. In the validation on the external cohort, the model recorded an accuracy of 94.62%, precision of
92.78%, a recall of 91.45%, and an AUC of 0.948. These classifications support our hypothesis that the real-world
performance of the framework continues to yield significant classification performances even when subjected
to new data from new sources. This stability and assurance of performance shows that the framework has the
possibility to be used in real world practices.

The Table 6 shows a comparative performance assessment of different optimized DL-based LCC (Lung
Cancer Classification) models using various performance measures, including Accuracy, Precision, Recall,
Sensitivity, Specificity, and F-Score. Out of all the models, the HHO-LOA-DCNN LSTM outperformed all others
on the various measures and achieved the highest accuracy (99.65%), precision (99.75%) and recall (99.23%)
measures, which indicates it is capable of accurate identification of both positive and negative cases. Additionally,
the HHO-LOA-DCNN LSTM model represents an overall balance between sensitivity and specificity which
demonstrates the consistency in detecting cancer positive instances; however, it also minimizes false positives in
the predictions which enhance precision compared to other models in this performance evaluation. Meanwhile,
the GW-CTO-DNN model exhibited a very poor performance suggesting that it possesses very limited
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Optimized deep learning based LCC models
Performance metrics | GW-CTO-DNN | FPSOCNN | TPO-CNN | LDA-MGSA-DNN | HHO-LOA- DCNN LSTM
Accuracy 85.22 96 98.58 99.03 99.65
Precision 84 94.34 98.42 99.21 99.75
Recall 83.43 95.65 97.23 98.21 99.23
Sensitivity 83.34 94.42 98.18 98.34 99.13
Specificity 82.13 95.32 98.12 97.23 98.65
F-Score 85.25 95.16 97.45 98.13 98.89

Table 6. Overall performance analysis of different optimized DL models for LCC.

classification capabilities. The intermediate models, FPSO-CNN, TPO-CNN, and LDA-MGSA-DNN performed
adequately well and show the effectiveness of hybrid metaheuristic optimization within DL architectures for a
important medical diagnosis task, however, these models did not reach the performance marks set forth by the
HHO-LOA-DCNN LSTM model.

Accuracy = ( (Trpve(ir;zzerFj;;;Z :)Le)Fanve) ) (19)
Specificity = ( (Tr_fzgﬁqﬁapve) ) (20)
Sensitivity = % (21)
Precision = <W1£1%> (22)

Recall = Trpoe (23)

Trpve + Fanve

2 (Recall x precision)
F1 core — T
s ( Recall + precision @24)

The confusion matrix generates True positive (Trpve), false positive (Fapve), true negative(Tr_nve), and false
negative(Fanve) values, which are used as assessment metrics to assess the model’s performance. Although the
proposed method achieved an accuracy of 99.65%, we subsequently validated the model by calculating the class
level confusion matrix, the ROC-AUC score and the calibration metrics, from which we can gain insight as to
whether the model produced consistent performance across folds in cross-validation. The overall accuracy for
the model was 98.7% across the folds. The calibration metrics (Brier score, Expected Calibration Error (ECE))
were all consistent with a valid model. To assess the robustness and generalizability of the model, we tested it on
an independent dataset, SPIE-AAPM Lung CT Challenge. The model achieved an accuracy of 96.9% with AUC
0f 0.962, which shows the model is generalizable across cohorts. We are able to confirm external validation of the
model through real-world application, discussing potential use outside of the training data.

Figure 12 shows a comparison of accuracy across five optimized DL-based LCC models. The HHO-LOA-
DCNN LSTM showed the absolute highest accuracy of 99.65% and indicates robustness and reliability in lung
cancer classification as compared to other models. LDA-MGSA-DNN and TPO-CNN produced the next highest
accuracies of 99.03% and 98.58% respectively, demonstrating strong predictive capability as well. FPSOCNN
produced moderate accuracy at 96%, and GW-CTO-DNN produced the least accuracy at 85.22%, suggesting
the least effectiveness. The maximum accuracy quantile introduced by hybrid optimization and DL integration
promotes high levels of diagnostic accuracy.

Figure 13 outlines a comparison of precision outcomes for five optimized DL-based lung cancer diagnosis
models. The HHO-LOA-DCNN LSTM model achieves the best precision at 99.75%, showing the model’s ability
to identify true positives with little to no false positives. LDA-MGSA-DNN (99.21%) and TPO-CNN (98.42%)
yield great precision results as well, FPSC-CNN is still acceptable at 94.34% and GW-CTO-DNN performed
much worse at 84.00%, giving a much worse misclassification rate. Comparing these results emphasizes how
much better hybrid DL models can work to increase the precision of diagnostic ability for lung cancer.

The recall comparison Fig. 14 provides evidence of the performance of each DL-based LCC model in
detecting the actual positive cases of lung cancer. The HHO-LOA-DCNN LSTM model is still outperforming
the others with the highest recall value of 99.23%, showing its great potential of identifying lung cancer patients
with minimal false negatives. In addition, the LDA-MGSA-DNN and TPO-CNN have recall values of 98.21%
and 97.23% respectively that still represent good recall values for the detection cases. The recall of FPSO-CNN
is moderate with a recall value of 95.65%. The lowest recall value is for GW-CTO-DNN at 83.43%, which
corresponds to weaker performance relatively to the other measurements. These results further highlight the
advantageous diagnostic sensitivity of hybrid-optimized DL models.
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Fig. 12. Comparison analysis of accuracy.
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Fig. 13. Comparison analysis of precision.

The sensitivity comparison Fig. 15 illustrates how each model performs in terms of correctly identifying true
positive lung cancer cases. The HHO-LOA-DCNN LSTM model clearly shows the highest sensitivity (99.13%)
for lung cancer, which clearly indicates that the model is best able to identify patients who have the disease and
will not miss any cases. LDA-MGSA-DNN and TPO-CNN also show very high performance, with 98.34% and
98.18%, respectively, pointing to the efficiency of both models’ true positive rates. FPSOCNN is also a very
promising overall model at 94.42%, however, there is a possibility of undetected positives due to the performance
of the GW-CTO-DNN models true positive rate (83.34%). Overall, hybrid-optimized models permitted a better
measure of sensitivity, which is an enormously important part of life-critical tests such as for lung cancer.

The specificity comparison Fig. 16 displays the effectiveness of each model accurately identifying true
negative cases, those without lung cancer (i.e., specificity). The HHO-LOA-DCNN LSTM model again performs
highest with specificity of 98.65%, indicating a very small number of false positives, thus indicating the model’s
reliability in ruling out non-cancer cases. TPO-CNN and LDA-MGSA-DNN are the next highest at 98.12% and
97.23%, respectively, both showing great promise in recognizing genuine negative cases. FPSOCNN performed
reasonably with 95.32% specificity while GW-CTO-DNN had the lowest specificity at 82.13%, indicating this
model was most likely to mislabel potential healthy individuals. Regardless of specificity or sensitivity values,
the results here illustrate the accuracy of the advanced hybrid models in identifying actual positive or negative
predictions.
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Figure 17 shows the comparison of F-Score across five DL-based models. The model with the highest F-Score,
and therefore the best classification prediction, is HHO-LOA-DCNN LSTM, with an F-Score of 98.89. The
next highest F-Score results are shown from LDA-MGSA-DNN and TPO-CNN, 98.13 and 97.45 respectively,
suggesting that the combination of hybrid and optimization of DL-based models offers better trade-offs in
precision and recall values. The F-Score for FPSOCNN is also noteworthy at 95.16 while GW-CTO-DNN
ranked comparatively less traditional, at 85.25 F-Score suggesting a relatively less effective architecture. The
F-Score trends among the previous hybrid architecture support the suggestion that DL-based architectures with
optimization and hybridization would increase model performance during classification tasks.

Table 7 analyzes the scalability and time complexity of various optimized DL models for LCC, highlighting
the superior efficiency of the HHO-LOA-CNN-LSTM model. With an execution time of 150.1 s and CPU
utilization of 4.64%, it significantly outperforms GW-CTO-DNN (262.6 s, 8.74%), FPSO-CNN (257.4 5, 10.76%),
TPO-CNN (234.5 s, 9.23%), and LDA-MGSA-DNN (195.3 s, 7.23%). This efficiency is achieved through
hyperparameter optimization via HHO-LOA, which fine-tunes LSTM units (100), batch size (32), learning rate
(0.0001), dropout rate (0.2), and weight decay (0.01) to balance accuracy and computational cost. The fitness
function incorporates a trade-off parameter (A) that prevents excessive resource consumption while maintaining
high accuracy (99.65%), ensuring a scalable and computationally efficient framework. The model’s ability to
optimize processing time and reduce computational complexity makes it well-suited for large-scale lung cancer
diagnosis using CT scans.
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Fig. 17. Comparison analysis of F-measure.

Time taken (Sec) 262.6 257.4 234.5 195.3 150.1
CPU Utilization (%) 8.74 10.76 9.23 7.23 4.64

Table 7. CPU utilization and time comparison.

The HHO-LOA-DCNN-LSTM model identifies lung cancer in CT images accurately with DCNN for
feature extraction and LSTM for identifying sequential patterns. The HHO-LOA hyperparameter optimization
algorithm optimizeslearning rate, dropout, and batch size parameters to achieve stable convergence and minimize
overfitting. Pixel thresholding and edge detection preprocessing enhance lesion detection by separating tumor
areas and removing noise. Comparing to the conventional models, HHO-LOA-DCNN-LSTM provides more
precise classification rate for various the performance evaluation matrices, and thus it is an extremely reliable

tool for lung cancer early detection and diagnosis.
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Fig. 18. Comparison chart on performance of DL models.

Model Accuracy % | Precision % | Recall % | AUC % | Inference time (s)
Proposed (DCNN +LSTM) | 98.75 97.80 98.10 98.7 150.1
ConvNeXt 97.20 95.45 96.00 97.1 165.3
EfficientNetV2 96.80 94.95 95.10 96.8 142.6
ViT 96.45 94.12 94.65 96.1 178.2
ResNet50 96.00 94.30 94.80 96.3 172.0
ResNet101 96.50 94.80 95.20 96.6 180.4
ResNet152 96.60 95.10 95.40 96.7 190.1
EfficientNetB0 95.50 93.80 94.00 95.7 130.5
EfficientNetB3 96.30 94.50 94.70 96.5 140.3
DenseNet121 96.90 95.00 95.30 96.9 155.7

Table 8. Comparison with recent baselines.

Figure 18 show the performance of five DL models according to Time Taken (in seconds), and the respective
CPU Utilization (in %). The HHO-LOA-CNN LSTM model had the best performance, using the least time
(~150 s) and the least CPU, making it the best model in terms of performance and usage of computational
resources. GW-CTO-DNN and the FPSOCNN had the worst performance times, as it took nearly (~260 s)
and the CPU was significantly more than the other models, indicating that the processing for these models is
less efficient than the others. TPO-CNN and LDA-MGSA-DNN had moderate performances, balancing the
amount of resource consumption with time usage. Overall, the data show that HHO-LOA-CNN LSTM was most
optimized in terms of time and CPU usage.

To determine the relative performance of our proposed DCNN + LSTM process, we compared them against
threeof the most recent state-of-the-art models: ConvNeXt, EfficientNetV2, and Vision Transformer (ViT),
ResNet50, ResNet101, ResNet152, EfficientNetB0, EfficientNetB. They were trained / tested on the same data
splits, with the same preprocessing and metrics used for testing.

This method is better than any of the baseline models based on accuracy and AUC, while still producing a
fairly competitive inference time. This shows that using hybrid DCNN +LSTM architecture with biologically
inspired optimization (HHO+LOA) produced better classification while keeping performance (efficiency)
intact. To evaluate the improvement of the proposed DCNN +LSTM framework using the HHO and LOA
optimization methods, we compared it to several DL models that represent the state-of-the-art, including
ResNet50, EfficientNetB0, DenseNet121, ConvNeXt-Tiny, and Vision Transformer (ViT-B/16). Table 8 shows
that proposed models showed an improvement over both the baseline models and had improved accuracy, F1-
score, and AUC. Therefore, the hybrid optimization and architectural strategies proposed in this work have
improved classification of malignant versus benign lung nodules and provide evidence that this DL framework
is ready for clinical use.
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Fig. 19. Accuracy comparison chart.
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Fig. 20. Precision comparison chart.

Figure 19 displays a comparison of the model performance across several DL architectures. The accuracy data
show that the Proposed DCNN + LSTM model outperformed all other architectures and has the highest accuracy
(98.75%), indicating it has the best classification performance. The existing architectures DenseNet121 (96.90%)
and ConvNeXt (97.20%) performed very well, albeit with lower accuracy than the proposed architecture.
Traditional models performed consistently, in a small range of accuracy of between 96.00 and 96.60% (ResNet50,
ResNet101 and ResNet152). The EfficientNetBO architecture performed the lowest of all, at 95.50%, indicating
that it sacrificed accuracy performance in exchange for being more efficient. Overall, these accuracies from the
bar chart suggest the effectiveness of using a hybrid model to achieve classification accuracy.

Figure 20 depicted above demonstrates the precision of various DL models. The Proposed DCNN +LSTM
model has the best precision at 97.80%. This suggests that true positive forecast was strong and false positives
were minimal. ConvNeXt had the next best precision at 95.45% followed closely by ResNet152 at 95.10%.
EfficientNetBO had measured the lowest precision at 93.80%, and ViT measured slightly higher at 94.12%.
Opverall, the proposed hybrid model seems to maintain high prediction quality across all outputs.

The recall comparison in Fig. 21 indicated that the Proposed DCNN + LSTM model has the highest recall
of 98.10% due to a strong ability to identify almost all actual positives. ConvNeXt follows closely behind at
96.00%, with several other models (ResNet152 (95.40%), DenseNet121 (95.30%), and EfficientNetV2 (95.10%))
with similar but lower recalls. The models with the lowest recalls were ViT and EfficientNetB0 at 94.65% and
94.00%, respectively, indicating that these models did not have as many actual positive cases identified. This
chart demonstrates the proposed model strength of limiting false negatives, which would be important in a
context where the costs of missed positives can be significant.

The AUC comparison chart (Fig. 22) shows that the Proposed DCNN + LSTM model has the highest AUC
score at 98.70% indicating better discriminative power and better handling of imbalanced data. ConvNeXt and
EfficientNetV2 are a close second for respective AUC values of 97.10% and 96.80%, respectively. Other models
(that are reliable) are ResNet152 (96.70%), DenseNet121 (96.90%), and EfficientNet B3 (96.50%). The lowest
scores were ViT and ResNet50 within this group, (around 96.10 —96.30%). Overall, the AUC comparison chart
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Model Brier score | ECE (%) | MCE (%) | Log loss
Proposed DCNN +LSTM | 0.042 2.8 6.1 0.154
EfficientNetV2 Baseline 0.063 4.3 9.7 0.203
ConvNeXt 0.058 3.7 7.9 0.189
Vision Transformer (ViT) | 0.061 4.0 8.2 0.198
ResNet50 0.065 4.5 10.1 0.215
ResNet101 0.063 4.2 9.5 0.210
ResNet152 0.062 4.1 9.3 0.208
EfficientNetB0 0.069 4.8 10.4 0.220
EfficientNetB3 0.061 4.1 8.5 0.200

Table 9. Calibration metrics.
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Fig. 24. Brier score comparison chart.

in the figure confirms the proposed model was effective in terms of classification performance and robustness
to imbalance.

The inference time comparison in Fig. 23 shows that EfficientNetB0 has the lowest inference time (130.50 s)
giving it the best computational efficiency out of the models tested. EfficientNetV2 (142.60s) and EfficientNetB3
(140.30s) also performed similarly in speed. On the other extreme, we have ResNet152 with the highest inference
time (190.10 s), followed by ResNet101 (180.40s) and ViT (178.20s) and so appear to have heavier computational
loads. The Proposed DCNN +LSTM model has a reasonable balance with an inference time of 150.10 s whilst
achieving high accuracy with no real inference lag. Therefore, we can conclude the proposed model achieves a
proper balance of performance and efficiency, suitable for real time or near real time applications.

Table 9 shows a number of previously discussed metrics that can calibrate the model: Brier Score, Expected
Calibration Error (ECE), Maximum Calibration Error (MCE) and Log loss, to assess the model’s confidence and
reliability of predictions. Overall, the Proposed DCNN +LSTM model is the best model, with the least Brier
Score (0.042), ECE (2.8%), MCE (6.1%) and Log Loss (0.154) indicating that it has the best confidence and
reliability of predictions. In contrast, the EfficientNetB0 model is the model with the least level of calibration, as
indicated by the highest Brier Score (0.069) and Log Loss (0.220). ConvNeXt and ViT performed moderate in
all these metrics; showing somewhat limited performance relative to the Proposed model. Overall, these results
illustrate the proposed model’s capabilities not only in terms of accuracy, but also when considering the quality
of calibrated probabilities - which are an important consideration for any high-consequence, or very uncertain
decision-making, use case.

This Fig. 24 shows the Brier Score and model comparison. The Proposed DCNN + LSTM Model had the
lowest Brier score, at 0.042, representing the best calibration and confidence according to the actual probabilities.
In contrast, EfficientNetBO0’s score was the highest, at 0.069, suggesting less reliable probabilistic output. By way
of example, the remaining models, including ConvNeXt (0.058) and ViT (0.061) range in range of the mean with
moderate accuracy but were still less accurate than calibration approaches taken here. The Brier Score reflects a
lower score here means a better model reliability when performing probabilistic classification tasks.

Figure 25 indicates the comparative Expected Calibration Error (ECE) chart for models. The Proposed
DCNN +LSTM showed the lowest ECE with 2.8%, which indicates the best level of calibration - the predicted
probabilities were closely aligned with actual probabilities. In contrast, EfficientNetB0 has the highest ECE of
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Fig. 26. MCE comparison chart.

4.8%, which suggests that it is more overconfident (or underconfident) in its predictions. The two other models
ConvNeXt (3.7%) and ViT (4.0%) showed moderately calibrated predictions. A lower ECE suggests that a model
is not only accurate but also reliable in estimating prediction certainty, which is necessary when dealing with
risk factors.

The rationale behind whether to trust the proposed DCNN +LSTM’s 6.1% Maximum Calibration Error
score is based on the Maximum Calibration Error (MCE) results we observed. The MCE indicates the worst-
case discrepancy between predictive confidence and predictive accuracy. MCE scores are preferable because the
Proposed DCNN + LSTM had the lowest score out of the three examined models at 6.1%. Therefore it is the most
trustworthy model, especially when using its least calibrated confidence bin. The other models, EfficientNetB0
and ResNet50 had MCE scores of 10.4% and 10.1%, respectively, which indicates certain conditions of significant
miscalibration. We know that lower MCE values refer to our trustworthiness in the models predicting an
outcome. This difference is significant, particularly considering potential use cases wherein we may require
predictions based on high confidence and high uncertainty memberships (as in Fig. 26).

This Fig. 27 shows the log loss values of the different DL models when performing the designated task. The
“Proposed DCNN + LSTM” model had the lowest log loss at 0.154 as compared to the other DL models, and this
means that this model performed the best of the models compared. The other models: EfficientNetV2 Baseline
(0.203), ConvNeXt (0.189), Vision Transformer (0.198), ResNet50v2 (0.208), ResNet101 (0.209), ResNet152
(0.215), etc. had significantly higher log loss values and therefore worse predictive accuracy relative to the
proposed model. The highest log loss was the EfficientNetBO with the value of 0.220 with the EfficientNetB3
slightly better with a log loss of 0.200. The proposed hybrid model (DCNN +LSTM) had the lowest log loss value
and suggested that it was better suited for this application than the other models.

Failure mode analysis and uncertainty-aware reporting

We undertook a failure mode analysis by examining cases where the model mislabeled nodules. By far, the most
common source of false positives was benign nodules that had irregular margins or spiculations that gave them
the appearance of malignancy. The vast majority of the false negatives were small malignant nodules with either
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Fig. 27. Logloss comparison chart.

Optimizer | Accuracy (%) | Convergence Speed | Stability (Loss Std. Dev.)
ABC 97.82 Moderate +0.64
GA 98.03 Slow +0.72
ACO 97.65 Slow +0.81
HHO 98.65 Fast +0.33

Table 10. Small hyperparameter tuning benchmark.

low contrast or that were located in the periphery. To mitigate these issues we propose a method of uncertainty-
aware reporting, wherein the model’s confidence scores (softmax probabilities) were thresholded to identify
low-confidence cases for review by a radiologist. For example, cases where the output probability was in the
range of 0.45-0.55 were 80% of the misclassifications, and therefore this “uncertainty band” could be leveraged
automatically for referral. In this way, we believe this new method is Journal best practice for the safe rollout of
Al clinical models to support human-AIT collaboration in cases of uncertainty.

Significance of the proposed work

The proposed HHO-LOA-DCNN + LSTM model demonstrates significant improvements in the use of the next
generation of lung cancer detection from CT scan images. By using the Horse Herd Optimization Algorithm
and the Lion Optimization Algorithms in a hybrid optimizer to tune the LSTM classifier, the model can provide
more accurate and more reliable classification of cancer and non-cancerous nodules. By using a DCNN for
feature extraction, the model automatically learns the most important features from imaging, removing one of
the critics of traditional machine learning techniques such as SVM, which need trained human interpretation.
LSTM also facilitates modeling sequential dependencies to improve diagnostic reliability. LUNA16 and LIDC-
IDRI benchmark datasets achieved a model classification accuracy of 98.75% demonstrating potential to
augment radiologist capabilities and provide earlier and more accurate detection of cancers of the lung. Clearly,
providing a decrease in diagnostic time, making fewer clinic visits for patients, while allowing a scalable non-
invasive mode appropriate for clinical uses is important.

Choosing horse herd optimization
Horse Herd Optimization (HHO) was used because it has the best exploration—exploitation strategy, which is
essential in dealing with high-dimensional hyperparameter optimization in DL problems. Unlike those using
Genetic Algorithms (GA) with crossover and mutation, thereby potentially leading to premature convergence,
or Artificial Bee Colony (ABC) that might not be precise when fine-tuning as the search for food is random,
HHO dynamically switches between exploratory roaming and exploitative social hierarchy behavior based on
herd movement. Unlike Ant Colony Optimization (ACO) that is most appropriate for discrete problems such
as path planning, HHO provides more rapid convergence and better adaptability in continuous spaces such as
learning rate, dropout, and neuron tuning.

In Table 10 HHO resulted in quicker convergence, lower loss oscillation, and improved precision. These
findings confirm HHO?s ability to adjust network parameters accurately, especially when combined with LOA
for adaptive stabilization control.
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Limitations and future scope

While the HHO-LOA-DCNN +LSTM model showed very high classification accuracy (98.75%) on standards
datasets, there are inherent limitations influencing the model’s performance that must be acknowledged. The
overall performance of the model is contingent upon the quality and consistency of the input CT images; thus,
noise, differences in incidental imaging devices, and incomplete annotations may impact total accuracy of feature
extraction. Moreover, the hybrid optimization and DL model requires heavy resources, including GPU utilization
when processing data for both training and inference, and thus may not be suitable for implementation in real-
time or low-resource clinical settings. Future research may focus on these limitations by attempting to reduce
the computational costs associated with the model constructs, as well as validating the robustness of the model
across a multitude of, and more recognized, real-life datasets. To enhance classification performance while
limiting total annotation costs in the future, further work could consider ensemble learning strategies, such
as ensembling multiple models that were trained independently and ensembling snapshot ensembles, or using
multiple local minima that can be captured in one training run. By ensembling diverse decision boundaries,
it may be easier to obtain more generalized and robust models. As described in our current DCNN+LSTM
architecture, in cases where models with differing initialization seeds or training schedules have been combined,
we expect to obtain, in cases of borderline nodules, greater predictive consistency and reduced variance, if the
models are ensemble.

Comparative analysis with literature works

The developed HHO-LOA-DCNN-LSTM model fares well in relation to most of the other currently available
literature-presented models. Anum Masood et al. (2019)* achieved 98.51% accuracy with 3D CNN utilizing
Median Intensity Projection, yet their method relied heavily on preprocessing, which causes complexity and
susceptibility to input quality. Sori Worku Jifara et al. (2019)*® have attained an 87.8% accuracy using a DCNN
method but were constrained by dataset diversity. Combined DenseNet with AdaBoost and yielded encouraging
performance on fluorescence images but could not be extended to other imaging modalities. On the contrary,
our optimized model HHO-LOA was 99.65% accurate, 99.75% precise, and 98.89% F-score, surpassing the best
literature-suggested measures on all test metrics. Furthermore, our model also significantly lowers computational
time (150.1 s) and CPU usage (4.64%) compared to existing work, thus further substantiating its real-world
feasibility and deployment potential. These findings amply demonstrate the robustness, generalizability, and
real-time practicability of our proposed approach.

Overfitting

To evaluate the sensitivity of the model to the LSTM architecture, we completed a parameter sweep varying the
number of LSTM units (50, 75, 100, 125, 150) and dropout values (0.1 to 0.5 by 0.1 increments). We found best
accuracy at 100 LSTM units and 0.2 dropout selected by the hybrid HHO + LOA optimizer. Moreover, accuracy
was stable within + 1.1% for units values of 75-125, and within +0.8% for dropout values from 0.2 to 0.4, thereby
it suggested moderate robustness to hyperparameter changes. The model resulted in minor overfitting for larger
unit and low dropout values (e.g., 150 units; 0.1 dropout), which justifies the utility of the optimizer for selecting
values.

The proposed HHO-LOA-DCNN-LSTM model is very efficient because of the two-stage metaheuristic
optimized hybrid deep neural network architecture. The DCNN extracts spatial and textural features from CT
scans, and the LSTM detects long-distance dependencies between slices, resulting in a descriptive lung nodule
representation. Horse Herd Optimization (HHO) and Lion Optimization Algorithm (LOA) jointly optimize
hyperparameters and model weights to enhance accuracy and convergence stability. This synergy provides a
performance better than that of current state-of-the-art models in the form of enhanced accuracy (99.65%),
reduced CPU utilization (4.64%), and shorter inference time (150.1s). The method generalizes to multiple public
benchmarks and external groups well and gets augmented with sampling and augmentation in the solution for
class imbalance. The ablation study also informs us about the crucial contribution made by each of the modules
involved and the success and stability of the proposed method in classifying lung cancer.

Conclusion

The HHO-LOA-DCNN-LSTM model demonstrates superior efficiency and scalability in LCC by integrating
DCNN for feature extraction and LSTM for sequential pattern recognition. Through HHO-LOA optimization,
key hyperparameters such as LSTM units (100), batch size (32), learning rate (0.0001), dropout rate (0.2), and
weight decay (0.01) are fine-tuned, ensuring stable convergence, reduced overfitting, and improved generalization.
Compared to conventional models, the HHO-LOA-DCNN-LSTM achieves the highest classification accuracy
(99.65%) while maintaining the lowest computational cost, with an execution time of 150.1 s and CPU utilization
of only 4.64%. Additionally, preprocessing techniques, such as pixel thresholding and edge detection, enhance
lesion detection by isolating tumor regions and filtering noise, further improving classification performance. The
model’s ability to balance accuracy, computational efficiency, and resource utilization makes it highly scalable
for large-scale lung cancer diagnosis using CT scans. Its superior performance across different performance
matrices establishes HHO-LOA-DCNN-LSTM as a highly reliable and efficient DL-based diagnostic tool for
early lung cancer detection. The evaluation using ROC, precision-recall curves, and corresponding AUC values
and confidence intervals, offers further evidence that the proposed model offers a good and reliable approach
in the context of lung cancer classification, which demonstrated very good or excellent model performance
in distinguishing nodules of differing malignancy. Future work can explore high-dose CT imaging, ensemble-
based FS, and advanced loss functions to further enhance performance in handling imbalanced datasets.
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