RESEARCH ARTICLE

Experimental evaluation and ANN-based predictive modelling of sand-coated rubberized concrete for sustainable construction

K. Suguna¹ · P. N. Raghunath¹ · Arun Murugesan² · Nidhya Rathinavel² · J. Karthick²

Received: 21 July 2025 / Revised: 9 August 2025 / Accepted: 11 August 2025 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025

Abstract

The study is focused on to utilise sand-coated rubber shreds as a partial replacement for coarse aggregate in normal strength concrete (NSC), with the aim that it will improve the performance of rubberized concrete and reduce environmental waste. Whereas traditional rubber aggregates have weak bonds with cementitious materials, resulting in limited strength development of the concrete, sand-coated rubber shreds were used with the intention of increasing their adhesion through the novel coating technique. Concrete with different proportions of sand coated rubber (0%, 2.5%, 5%, and 7.5%) were tested for mechanical and durability properties such as compressive strength, flexural strength, toughness, elasticity, water absorption, resistance to acid, and chloride permeability. Findings reveal that rubber replacement of up to 5% improves the strength and durability of the concrete. The mix with 5% replacement (M2) from the experiment recorded the highest compressive strength of 29.31 MPa and flexural strength of 8.93 MPa. A General Regression Neural Network (GRNN) model was developed in MATLAB to predict performance parameters. Prediction of the GRNN model was very close to experimental values, thus making the model a good tool to predict the behaviour of rubberized concrete. This implies that sand-coated rubber aggregates provide a solution to the problem of sustainability with better concrete performance and utilizes rubber waste as a resource. The GRNN model acts as a good predictive tool to enhance the commercial use of rubberized concrete.

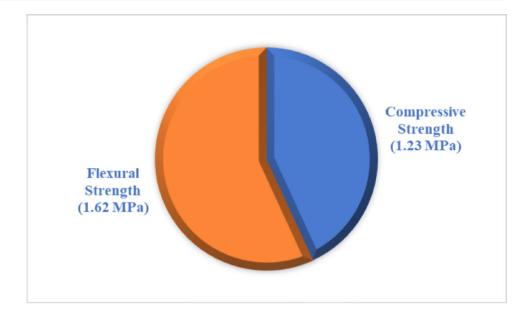
Keywords Rubberized concrete · Sand-coated rubber shreds · GRNN · ANN prediction · Sustainable construction · Durability · Mechanical properties

1 Introduction

Industrialization and urbanization happening at a fast pace have witnessed equally exponential increases in the generation of non-biodegradable wastes, especially scrap rubber tires. With global-level estimates showing that more than one billion tires get disposed of annually, these become a grave threat to the environment as they are resistant to natural degradation processes. This has prompted research workers and engineers to look for the reuse of this waste,

Published online: 21 August 2025

especially in construction, where rubber shreds are used in concrete in place of natural aggregate materials. Rubberized concrete offers a handful of advantages like resisting impact, absorbing energy, and ductility, but probably the added rubber decreases the concrete compression and flexure. Such behaviour arises from the poor interfacial bonding between hydrophobic rubber surfaces and hydrophilic cement paste. Many surface modifications have been considered to enhance the interface. Among these, the sand-coating has been established as one treatment that enhances the ITZ at the rubber-cement interface and thereby the mechanical behaviours [1, 2].


Being able to predict mechanical performance in rubberized concrete has remained very difficult owing to the complexity of interaction between material constituents and variability in the test results. Conventional empirical methods could fail when confronted by nonlinear relationships among variables. Recently, various modelers have applied Artificial Neural Networks (ANN), especially General

Department of Civil and Structural Engineering, Annamalai University, Cuddalore, India

Concrete and highway Engineering Laboratory, Department of Civil Engineering, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore 641 062, India

Fig. 11 Root Mean Square Error (RMSE) Summary

(GRNN). The summary of the notable findings of this comprehensive research is as follows:

- Mix Design and Density Trends: The use of rubber shreds coated with sand contributed to a decrease in the overall dry concrete density, which is effective lightweighting, without compromising the desired mechanical properties. The density dropped from 2834 kg/m³ in the control mix (M0) to 2622 kg/m³ in the highest content of rubber blend (M3).
- Mechanical Performance: Compressive strength improved with the inclusion of rubber shreds to 5% to a high average of 29.31 MPa at M2 before reducing steadily at 7.5% replacement. Flexural strength also improved significantly, particularly in mixes containing rubber percentages of 2.5% and 5%, to a high of 8.93 MPa at M2. This is because of enhanced crack bridging and elasticity of rubber particles.
- Least strength loss in acid conditions was seen with the M2 mix, reflecting greater chemical resistance to an optimal rubber level. The rubberized mixes were all more permeable than control, and M2 still had a good mechanical strength-durability compromise. Rubberized mixes were more impact resistant, as M2 took 20 blows to achieve final failure, consistent with greater toughness.
- GRNN modeling made satisfactory predictions in compressive strength as well as flexural strength. Differentials between experimental and predicted values were maintained within tolerance limits (±10% for compressive strength, ±15% for flexural strength), testifying to the viability of GRNN prediction in predicting challenging non-linear problems in civil engineering material science research.

Together, these results confirm that adding sand-coated rubber shreds to concrete not only improves certain mechanical and impact characteristics but also contributes to environmental sustainability in a positive way through recycling recycled rubber.

5 Conclusion

This research examined partial replacement of coarse aggregate with sand-coated rubber shreds in concrete based on its mechanical, durability, and environmental behavior. The results of this research are useful in giving insights on the potential of using rubberized concrete as a new material in sustainable building. The main conclusions of this research are:

- Compressive and flexural strengths up to 5% of rubber shreds were improved. The optimal combination, M2 (5% rubber replacement), was determined to possess a compressive strength of 29.31 MPa and a flexural strength of 8.93 MPa, both greater than that of the control mix (M0). It indicates that moderate rubber addition improves the mechanical performance of concrete, especially in terms of energy absorption and crack-bridging, which are most pertinent to application under dynamic and impact loading conditions.
- Rubber incorporation lowered the dry density of the concrete, which would be characteristic of its ability to form lightweight concrete. This aspect can be especially useful in non-structural applications, such as pavements or light partition walls, where dead load is minimized without loss of performance.
- The durability tests indicated that rubberized concrete had good resistance to acid and impact load, particularly in

mixes with up to a maximum of 5% rubber content. Mix M2 was seen to have improved acid resistance and low loss of strength. Higher rubber content did result in poorer chloride resistance. However, the rubberized mixes showed improved impact resistance, indicating that rubber-modified concrete may prove to be highly beneficial in structures exposed to dynamic loads and abrasion.

- General Regression Neural Network (GRNN) was able to predict the compressive and flexural strengths of the rubberized concrete in an acceptable range of errors (±10% for compressive strength and ±15% for flexural strength). This demonstrates the applicability of machine learning models to optimize concrete mix design and predict material performance, presenting a good alternative to experiment-based methods.
- Sand-coated rubber shreds is a viable method for waste rubber recycling, the reduction of environment pollution, and the preservation of natural aggregates. This paper provides evidence to support the assertion that rubberized concrete can be part of circular economy practices in the construction sector as a sustainable solution for waste management and material resource management.

Overall, this research is compelling proof that rubberized concrete can be a viable alternative to normal concrete, particularly in non-structural applications, where all its benefits of light weight, impact resistance, and sustainability can be maximized. Its application as high-performance structural elements, however, requires further research to improve chloride resistance and assess long-term performance.

Acknowledgements The authors thank the Department of Civil Engineering, PSG Sons' and Charities for their support.

Author contributions Raghunath P N and Suguna K contributed to the study conception and design. Material preparation, data collection and analysis were performed Karthick Jaisankar. The first draft of the manuscript was written by Karthick Jaisankar. Arun Murugesan and Nidhya Rathinavel contributed to the manuscript draft correction. All authors read and approved the final manuscript.

Funding The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Data availability No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

References

 Eissa M, Habib A, Houri AAL, Alibrahim B (2024) Recent efforts on investigating the effects of recycled rubber content on

- the mechanical properties of structural concrete. Discov Civ Eng 1(1):16
- Zhai S et al (2022) Effect of modified rubber powder on the mechanical properties of cement-based materials. J Mater Res Technol 19:4141–4153
- Adwan JA, Alzubi Y, OVERVIEW OF RECYCLING RUBBER TIRE AS AGGREGATES IN CONCRETE: AN APPROACH FOR SOLID WASTE MANAGEMENT (2022) J Eng Technol Adv 7(2):1–12
- Haddadou A, Zaouai S, Douara TH (2024) Effect of different treatments of granular rubber on mechanical performance of selfcompacting rubberized concrete-using locally sourced materials. Stud Eng Exact Sci 5(2):e9672–e9672
- Sgobba S, Borsa M, Molfetta M, Marano GC (2015) Mechanical performance and medium-term degradation of rubberised concrete. Constr Build Mater 98:820–831
- Feng Y et al (2025) Multi-scale analysis and structural application
 of the synergistic enhancement effect of silane coupling agent
 on the interface between pva/rubber and cement. J Thermoplast
 Compos Mater 38(1):209–238
- Zvonarić M, Benšić M, Barišić I, Dokšanović T (2024) Prediction models for mechanical properties of cement-bound aggregate with waste rubber. Appl Sci 14(1):470
- Saifuddin M, Maneeth PD, Brijbhushan S (2019) An experimental investigation of partially replaced crumb rubber with fine aggregates in concrete. Int J Sci Technol Res 8:1–5
- Uruk Z, Kiraz A (2023) Artificial intelligence based prediction models for rubber compounds. J Polym Eng 43(2):113–124
- Huang X, Zhang J, Sresakoolchai J, Kaewunruen S (2021) Machine learning aided design and prediction of environmentally friendly rubberised concrete. Sustainability 13(4):1691
- Wei C et al (2021) Mussel inspired modification of rubber crumbs for improved interfacial adhesion in rubber cement mortar. Appl Compos Mater 28:1767–1780
- Si R, Guo S, Dai Q (2017) Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles. Constr Build Mater 153:496–505
- Barletta M, Trovalusci F, Gisario A, Venettacci S (2013) New ways to the manufacturing of pigmented multi-layer protective coatings. Surf Coat Technol 232:860–867
- Gwin LE, Weaver EJ (1977) A new dimension in rubber compound tackifiers. J Elastomers Plast 9(3):289–298,
- Paul SC et al (2023) Treated waste tire using cement coating as coarse aggregate in the production of sustainable green concrete. Eng 4(2):1432–1445
- Eldin NN, Senouci AB (1993) Observations on rubberized concrete behavior. Cem Concr Aggregates 15(1):74

 –84
- Fadiel AAM, Mohammed NS, Abu-Lebdeh T, Munteanu IS, Niculae E, Petrescu FIT (2023) A comprehensive evaluation of the mechanical properties of rubberized concrete. J Compos Sci 7(3):129
- Li Z, Li F, Li JSL (1998) Properties of concrete incorporating rubber tyre particles. Mag Concr Res 50(4):297–304
- Srivastava A, Mishra A, Singh SK (2025) An effect of nano alumina and nano titanium Di oxide with polypropylene fiber on the concrete: mechanical and durability study. Discov Civ Eng 2(1):6
- Yehia S, Abdelfatah A, Mansour D (2020) Effect of aggregate type and specimen configuration on concrete compressive strength. Crystals 10(7):625
- Ogirigbo OR, Ukpata J (2017) Effect of chlorides and curing duration on the hydration and strength development of plain and slag blended cements. J Civ Eng Res 7(1):9–16
- Ramezanianpour AA, Malhotra VM (1995) Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly Ash or silica fume. Cem Concr Compos 17(2):125–133

- 23. Zhang SP, Zong L (2014) Evaluation of relationship between water absorption and durability of concrete materials, *Adv. Mater. Sci. Eng.*, vol. no. 1, p. 650373, 2014
- Zhuang S, Wang Q, Zhang M (2022) Water absorption behaviour of concrete: novel experimental findings and model characterization. J Build Eng 53:104602
- Pham TM et al (2024) Impact of rubber content on performance of Ultra-High-Performance rubberised concrete (UHPRuC). Int J Concr Struct Mater 18(1):59
- Chen D, Yu X, Shen J, Liao Y, Zhang Y (2017) Investigation of the curing time on the mechanical behavior of normal concrete under triaxial compression. Constr Build Mater 147:488–496
- 27. Kovler K, Roussel N (2011) Properties of fresh and hardened concrete. Cem Concr Res 41(7):775–792
- Monika F, Muqorrobin K, Prayuda H, Zhafira T, Tiyani L Prediksi Kuat lentur Balok Beton Dengan Menggunakan program Response-2000 Dan Persamaan Pendekatan. MEDIA Komun Tek SIPIL, 28(1): 40–48
- Uribe CRM, Guzmán JS, Moreno MAR (2024) Experimental study of the semicircular bending test for estimating the flexural strength of concrete mixtures for pavements. Rev Ing Construcción 39(2):127–139
- Pham TM, Renaud N, Pang V, Shi F, Hao H, Chen W (2022) Effect of rubber aggregate size on static and dynamic compressive properties of rubberized concrete. Struct Concr 23(4):2510–2522
- Cong L, Wang Y, Gao X (2025) Enhancing the salt Frost durability of concrete with modified epoxy composite coating. Mater (Basel) 18(4):737
- Singh AK, Jain A, Jain S (2013) Rapid chloride permeability test of polypropylene and glass fiber reinforced concrete. Int J Eng Res Technol 2(5):534–543
- Ocholi A, Sanni MY, Ejeh SP (2018) The impact resistance effect of partially replacing coarse aggregate with ground-rubber aggregate in concrete. Niger J Technol 37(2):330–337
- Wang L, Wang H, Jia J (2009) Impact resistance of steel-fibrereinforced lightweight-aggregate concrete. Mag Concr Res 61(7):539–547
- Vadivel TS, Suseelan A, Karthick K, Safran M, Alfarhood S (2024) Experimental investigation and machine learning prediction of mechanical properties of rubberized concrete for sustainable construction. Sci Rep 14(1):22725
- Adamu M, Çolak AB, Ibrahim YE, Haruna SI, Hamza MF (2023) Prediction of mechanical properties of rubberized concrete incorporating fly Ash and nano silica by artificial neural network technique. Axioms 12(1):81
- Adnyani LPW, Subanar S (2015) General regression neural network (GRNN) Pada Peramalan Kurs Dolar Dan Indeks Harga Saham Gabungan (IHSG). PYTHAGORAS J Progr Stud Pendidik Mat 4:1
- Caraka RE, Yasin H, Prahutama A (2015) Pemodelan general regression neural network (grnn) Pada data return Indeks Harga Saham Euro 50. J Gaussian 4(2):181–192
- Ramezanianpour AA, Pilvar A, Mahdikhani M, Moodi F (2011) Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength. Constr Build Mater 25(5):2472–2479
- Wu SS, Li BZ, Yang JG, Shukla SK Predictive modeling of highperformance concrete with regression analysis, in (2010) *IEEE International Conference on Industrial Engineering and Engi*neering Management, IEEE, 2010, pp. 1009–1013
- Sofi A (2018) Effect of waste tyre rubber on mechanical and durability properties of concrete—A review. Ain Shams Eng J 9(4):2691–2700
- Asteris PG, Mokos VG (2020) Concrete compressive strength using artificial neural networks. Neural Comput Appl 32(15):11807–11826

- El-Gammal A, Abdel-Gawad AK, El-Sherbini Y, Ajj, Shalaby (2010) Compressive strength of concrete utilizing waste tire rubber. J Emerg Trends Eng Appl Sci 1(1):96–99
- Khan RBN, Khitab A (2020) Enhancing physical, mechanical and thermal properties of rubberized concrete. Eng Technol Q Rev 3:1
- 45. Namdar A, Bin Zakaria I, Hazeli AB, Azimi SJ, Razak ASBA, Gopalakrishna GS (2013) An experimental study on flexural strength enhancement of concrete by means of small steel fibers. Fract Struct Integr 7(26):22–30
- Zheng WH, Li LJ, Liu F (2011) The compressive and flexural deformation of rubberized concrete. Adv Mater Res 168:1788–1791
- Javed A et al (2022) Mechanical performance of amorphous metallic Fiber-Reinforced and rubberized thin bonded Cement-Based overlays. Sustainability 14(13):8226
- 48. Mostafaei H, Bahmani H, Mostofinejad D (2025) Damping behavior of Fiber-Reinforced concrete: A comprehensive review of mechanisms, materials, and dynamic effects. J Compos Sci 9(6):254
- Fadhil M, Ibrahim E (2024) Physico-Mechanical properties of High-Strength concrete containing supplementary cementitious materials subjected to acid attack. Al-Rafidain Eng J 29(2):45–55
- Krasnyi BL, Tarasovskii VP, Krasnyi AB (2012) Chemical stability of porous permeable ceramic with aluminosilicate binder in acidic and alkaline reagents. Glas Ceram 68(9):327–329
- Khan MNN, Elahi MMA, Kuri JC, Sarker PK, Shaikh FUA (2022) Acid resistance of alkali-activated composites containing waste glass as fine aggregate. Adv Cem Res 35(6):248–257
- Aldea C-M, Shah SP, Karr A (1999) Effect of cracking on water and chloride permeability of concrete. J Mater Civ Eng 11(3):181–187
- Khalil E, Abd-Elmohsen M, Anwar AM (2015) Impact resistance of rubberized self-compacting concrete. Water Sci 29(1):45–53
- Liu F, Chen G, Li L, Guo Y (2012) Study of impact performance of rubber reinforced concrete. Constr Build Mater 36:604

 –616
- Bu L, Du G, Hou Q (2021) Prediction of the compressive strength of recycled aggregate concrete based on artificial neural network. Mater (Basel) 14(14):3921
- Abdollahzadeh A, Masoudnia R, Aghababaei S (2011) Predict strength of rubberized concrete using atrificial neural network. WSEAS Trans Comput 10(2):31–40
- Bachir R, Sidi Mohammed AM, Habib T (2018) Using artificial neural networks approach to estimate compressive strength for rubberized concrete. Period Polytech Civil Eng 62(4):858–865
- 58. Guendouz M, Boukhelkhal D (2017) Recycling of rubber waste in sand concrete. J Build Mater Struct 4(2):42–49
- Assaggaf R, Maslehuddin M, Al-Osta MA, Al-Dulaijan SU, Ahmad S (2022) Properties and sustainability of treated crumb rubber concrete. J Build Eng 51:104250
- Motloq RF, Khalil WI, Dawood ET (2023) Some properties of sustainable concrete with rubber waste aggregate. Eng Technol J 41(11):1337–1345

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

