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A B S T R A C T

The study explores predominantly bio-based benzoxazines, in order replace conventional/petroleum based 
benzoxazines. In this aspect, developing bio-based benzoxazines using furfural bis-thymol (FBT) and renewable 
amine derivatives, including 1-aminododecane (ad), 1-aminooctadecane (ao), 1-amino-9-octadecene (ae), 2-ami-
nomethylfuran (af) and dehydroabietylamine (da). These plant-derived precursors provide an eco-friendly 
approach to developing advanced benzoxazine materials. Comprehensive characterization of the synthesized 
benzoxazines was performed using FTIR, 1H NMR and 13C NMR techniques. Curing studies were assessed using 
DSC, notably, FBT-ae exhibit the dual curing nature with temperature of 210 ◦C and 243 ◦C. Among the cured 
samples, poly(FBT-af) resulted highest char yield of 50 % due to the additional cross-linking nature of furan ring. 
The superhydrophobic nature was achieved by coating FBT-ao containing benzoxazine on cotton fabric which 
showed the WCA value of 156◦. All the polybenzoxazines possesses enhanced corrosion resistant behavior which 
was supported by the DFT results. Moreover, the samples resulted better antimicrobial nature against S.aureus 
and E.coli. Further, low dielectric constant value of 3.39 with minimum dielectric loss has been noticed. The 
obtained results demonstrates the potential of bio-based benzoxazines as a sustainable and high-performance 
alternative for diverse industrial and engineering applications, contributing to the growing global demand for 
greener material solutions.

1. Introduction

The increasing awareness of environmental sustainability has 
significantly influenced advancements in material science, particularly 
in polymer technology [1]. The reliance on fossil-based polymers, 
despite their versatility and widespread use, has resulted in severe 
ecological concerns, including resource depletion, pollution and pro-
longed persistence in ecosystems [2]. To address these issues, re-
searchers and industries have turned their focus toward the 
development of sustainable and bio-based materials, aiming to replace 
conventional polymers with environmentally friendly alternatives [3]. 
Bio-based polymers derived from renewable resources have emerged as 
a viable solution to mitigate the environmental challenges associated 
with traditional materials [4,5]. Among these, polybenzoxazines (PBzs) 
stand out due to their remarkable thermal stability, mechanical strength 
and chemical resistance [6,7]. Unlike conventional polymers, benzox-
azines (Bzs) offer unique properties, such as tunable cross-linking den-
sity and surface functionality, making them suitable for various 
applications ranging from coatings and adhesives to electronics and 

biomedical materials [8].
The utilization of bio-phenols such as thymol, eugenol, cardanol and 

vanillin offer an eco-friendly route for sustainable material design 
[9–12]. These naturally derived phenolic compounds not only reduce 
the dependency on fossil fuels but also provide inherent bioactivity, such 
as antimicrobial and antifouling properties [13–15]. In recent years, 
there has been a growing interest in developing multifunctional bio- 
based materials that combine hydrophobicity, antimicrobial activity 
and corrosion resistance [16,17]. For instance, thymol, a phenolic 
compound abundantly found in thyme plants, exhibits exceptional 
antimicrobial properties, making it suitable choice for the preparation of 
Bzs [18]. These properties are particularly valuable for applications in 
environments, such as marine coatings, or in healthcare, where resis-
tance to microbial colonization is crucial [19]. Similarly, bio-phenols 
like pyrogallol, curcumin, vanillic acid, tyrosine and eugenol 
contribute to enhanced hydrophobicity and corrosion resistance, 
addressing critical challenges in marine and industrial environments 
[20–23]. Furthermore, bio-based Bzs obtained from rosins, resveratrol, 
hordenine have shown potential in advanced electronic applications due 
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to their low dielectric constants and exceptional insulating properties, 
which are essential for modern microelectronic devices [24–26].

In order to align with the above said objectives some of the studies 
pertaining to the fully bio-based Bzs deals with the naturally sourced 
phenol and amines. Thymol is considered a bio-phenol because it is a 
naturally occurring phenolic compound found in various plants. It is 
commonly found in the essential oil of thyme (Thymus vulgaris) and 
other plants like oregano [27]. Furfural is derived from pentosan-rich 
agricultural biomass like corncobs, sugarcane bagasse, and rice husks 
through acid hydrolysis and dehydration of pentose sugars, primarily 
xylose [28]. 2-aminomethylfuran has also shown to be derived from 
furfural, which can be obtained from the sugars of agricultural waste 
[29]. 1-aminooctadecane, 1-aminododecane can be synthesized from 
naturally occurring fats and oils, which are commonly derived from 
plant and animal sources [30]. These fats and oils serve as the feedstock 
for the production process. 1-amino-9-octadecene is often produced by 
the reaction of oleic acid with ammonia or other amination agents. Oleic 
acid is a fatty acid found in various vegetable oils, making it a renewable 
and bio-based material [31]. Dehydroabietylamine is obtained from 
rosin, a natural resin extracted from pine trees, through chemical 
modification processes such as amination of dehydroabietic acid, a 
primary component of rosin [32]. Bio-refinery syngas can be fermented 
to produce bio-methanol, which has the potential be used to produce 
paraformaldehyde. These methods reduce the reliance on synthetic 
chemistry and petrochemical feedstock [33].

However, collective utilization of all the above mentioned five 
amines and its comprehensive studies for the preparation of bio-based 
Bzs are not found in most of the literature as per our knowledge. 
Hence this study aims to utilize the naturally sourced precursors as much 
as possible and focuses on the synthesis of bio-based Bzs using furfural 
bis-thymol and renewable amine derivatives. These plant-derived pre-
cursors provide an eco-friendly approach to developing advanced ben-
zoxazine materials. Comprehensive characterization of the synthesized 
Bzs was performed using FTIR, 1H NMR and 13C NMR techniques. The 
thermal, hydrophobic, antimicrobial, dielectric and corrosion-resistant 
properties were systematically evaluated to study their multifunc-
tional performance. Also, experimental corrosion resistant results were 
theoretically corelated with the DFT results. This work demonstrates the 
potential of bio-based Bzs as a sustainable and high-performance alter-
native for diverse industrial and engineering applications, contributing 
to the growing global demand for greener material solutions.

2. Experimental

2.1. Materials

Thymol (≥99 %), 1-aminododecane (98 %), 1-aminooctadecane (98 
%), 1-amino-9-octadecene (95 %), 2-aminomethylfuran (97 %) and 
dehydroabietylamine (96 %) were obtained from SRL, India. Sodium 
sulphate (anhydrous, ≥99 %) and ethyl acetate (HPLC grade) were 
purchased from Isochem, India. Furfural bis-thymol was synthesized as 
per the earlier report [34].

2.2. Characterization techniques

The detailed analyses, characterization and testing techniques are 
provided in the supporting information file S1.

2.3. Syntheses of FBT bio-based Bzs

FBT bio-based Bz monomers were synthesized via Mannich 
condensation reaction involving FBT, paraformaldehyde and five 
different bio-amines such as 1-aminododecane (ad), 1-aminooctadecane 
(ao), 1-amino-9-octadecene (ae), 2-aminomethylfuran (af) and dehy-
droabietylamine (da). The general synthetic method involved using FBT 
(1 mmol), paraformaldehyde (4 mmol) and the respective amine (2 

mmol) under controlled heating and stirring conditions, as described 
below (Scheme 1).

2.4. Synthesis of FBT-ad

In a 100 mL round-bottom flask, FBT (1 mmol, 0.37 g), para-
formaldehyde (4 mmol, 0.12 g) and 1-aminododecane (2 mmol, 0.37 g) 
were combined. The mixture was stirred continuously and slowly heated 
to 80 ◦C for 1 h to achieve a homogeneous solution. Subsequently, the 
temperature was increased to 110 ◦C and maintained for an additional 6 
h to complete the reaction. After cooling to room temperature, the re-
action mixture was extracted with ethyl acetate, washed thoroughly 
with distilled water and 1 M NaOH to remove any unreacted materials, 
dried over anhydrous sodium sulfate. The organic layer was evaporated 
under reduced pressure and the obtained product was further dried in a 
hot-air oven at 50 ◦C to yield the FBT-ad monomer as a viscous solid.

ATR-FTIR (ν cm− 1): 2956–2834 (–CH2-), 1480 (C–H bend), 
1080,1233 (C-O-C), 1122 (C-N-C), 940 (oxazine ring), 750 (Ar-H out-of- 
plane).

1H NMR (CDCl3), δ ppm: 1.20–1.50 (Aliphatic –CH2), 2.24 (–CH3), 
3.25 (–CH), 4 (O-CH2-C), 5.01 (O-CH2-N), 5.3 (=CH–), 5.5 (–CH), 
5.90–6.50 (furan), 6.5–7.6 (Ar-H).

13C NMR (CDCl3), δ ppm: 26–34 (Aliphatic –CH2), 16–20 (Aliphatic 
–CH3), 40 (–CH-), 50 (Ar-C-N), 80 (O-C-N), 129–131 (=C-), 110–139 
(furan), 115–155 (Ar-C).

2.5. Synthesis of FBT-ao

Following a similar procedure, FBT (1 mmol, 0.37 g), para-
formaldehyde (4 mmol, 0.12 g) and 1-aminooctadecane (2 mmol, 0.53 
g) were reacted. After sequential heating at 80 ◦C and 110 ◦C, the re-
action mixture was subjected to extraction with ethyl acetate, followed 
by aqueous washing and drying. Solvent removal under reduced pres-
sure and drying in a hot-air oven at 50 ◦C provided the FBT-ao resin.

ATR-FTIR (ν cm− 1): 2956–2834 (–CH2-), 1480 (C–H bend), 
1080,1233 (C-O-C), 1122 (C-N-C), 940 (oxazine ring), 750 (Ar-H out-of- 
plane).

1H NMR (CDCl3), δ ppm: 1.20–1.50 (Aliphatic –CH2), 2.24 (–CH3), 
3.25 (–CH), 4 (O-CH2-C), 5.01 (O-CH2-N), 5.3 (=CH–), 5.5 (–CH), 
5.90–6.50 (furan), 6.5–7.6 (Ar-H).

13C NMR (CDCl3), δ ppm: 26–34 (Aliphatic –CH2), 16–20 (Aliphatic 
–CH3), 40 (–CH-), 50 (Ar-C-N), 80 (O-C-N), 129–131 (=C-), 110–139 
(furan), 115–155 (Ar-C).

2.6. Synthesis of FBT-ae

For the synthesis of FBT-ae, FBT (1 mmol, 0.37 g), paraformaldehyde 
(4 mmol, 0.12 g) and 1-amino-9-octadecene (2 mmol, 0.47 g) were used. 
The reaction mixture was initially stirred and heated to 80 ◦C for 1 h, 
then further heated to 110 ◦C for 6 h. Post-reaction, the product was 
extracted, washed and dried similarly and the resulting FBT-ae mono-
mer was isolated as a resin.

ATR-FTIR (ν cm− 1): 2956–2834 (–CH2-), 1480 (C–H bend), 
1080,1233 (C-O-C), 1122 (C-N-C), 940 (oxazine ring), 750 (Ar-H out-of- 
plane).

1H NMR (CDCl3), δ ppm: 1.20–1.50 (Aliphatic –CH2), 2.24 (–CH3), 
3.25 (–CH), 4 (O-CH2-C), 5.01 (O-CH2-N), 5.3 (=CH–), 5.5 (–CH), 
5.90–6.50 (furan), 6.5–7.6 (Ar-H).

13C NMR (CDCl3), δ ppm: 26–34 (Aliphatic –CH2), 16–20 (Aliphatic 
–CH3), 40 (–CH-), 50 (Ar-C-N), 80 (O-C-N), 129–131 (=C-), 110–139 
(furan), 115–155 (Ar-C).

2.7. Synthesis of FBT-af

In the case of FBT-af, FBT (1 mmol, 0.37 g), paraformaldehyde (4 
mmol, 0.12 g) and 2-aminomethylfuran (2 mmol, 0.19 g) were reacted 
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properties suitable for replacing conventional fossil-based Bzs. Among 
the developed samples, poly(FBT-af) exhibited better thermal stability, 
with the highest char yield of 50 %. The superhydrophobic nature of 
poly(FBT-ao) was evident from its WCA value of 156◦ when applied as a 
coating on cotton fabric, showing its water-repellent behavior. 
Furthermore, antimicrobial studies showed the effectiveness of these 
materials in inhibiting microbial growth. Dielectric analysis revealed 
low dielectric constants ranging between 3.39 and 3.54, enhancing their 
suitability for electronic applications. Further, the polybenzoxazine 
coatings provided exceptional corrosion resistance on mild steel, 
achieving an efficiency of 99 % and aligns with the DFT results. From, 
these results the developed materials suitably exploited for industrial 
applications, including adhesives, sealants and high-performance 
coatings.

CRediT authorship contribution statement

K.Mohamed Mydeen: Writing - original draft, Methodology, Anal-
ysis. Balaji Krishnasamy: Supervision, Project administration, Meth-
odology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgment

The authors express their gratitude to the PSG Management, Secre-
tary, Principal, and PSG Institute of Technology and Applied Research, 
Coimbatore-641062, India, for their invaluable moral and financial 
support. One of the authors Mohamed Mydeen K thank the PSG Man-
agement for providing full-time research fellowship.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.eurpolymj.2025.114017.

Data availability

Data will be made available on request.

References

[1] M. Hong, E.Y.X. Chen, Future Directions for Sustainable Polymers, Trends Chem 1 
(2019) 148–151, https://doi.org/10.1016/j.trechm.2019.03.004.

[2] K. Alper, K. Tekin, A.J. Ragauskas, Sustainable Energy & Fuels Sustainable Energy 
and Fuels from Biomass : a Review Focusing on Hydrothermal Biomass (2020) 
4390–4414, https://doi.org/10.1039/d0se00784f.

[3] K. Chiou, H. Ishida, Incorporation of Natural Renewable Components and Waste 
Byproducts to Benzoxazine Based High Performance Materials, Curr Org Chem 17 
(2013) 913–925, https://doi.org/10.2174/1385272811317090005.

[4] G. Lligadas, A. Tüzün, J.C. Ronda, M. Galià, V. Cádiz, Polybenzoxazines: New 
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