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Abstract— Measuring partial discharge (PD) in a power 
transformer (PT) is one of the most crucial metrics for 
determining how well an insulating system is performing. 
However, in onsite environments, single/multiple PD 
sources or imbalance conditions may limit the signal's 
acquisition ability. Numerous oversampling techniques 
are used on imbalanced datasets, but these techniques 
could be more extensive in displaying a non-deterministic 
correlation between the regional and global distributions. 
The proposed work uses stacking deep scalogram 
features with an enhanced generative adversarial network 
(SDSF-EGAN) for oversampling based on a minority 
sample global underlying structure. Three specific tactics 
are offered in our proposed work: The generator's input 
random vectors are sampled from a rough estimate of the 
minority sample distribution to create fake samples more 
accurately; a residual about minority samples is added to 
the discriminator to reinforce the loss function's 
constraint; and the generated samples are redistributed 
using a reshaper. At last, a fine-tuned VGG19 model and 
three different pre-trained DNN models, ResNet101, 
InceptionV2, and VGG16, are used for feature extraction to 
attain the varied SDSF map. The proposed results 
demonstrate that the system gets a realistic identification 
rate of 99.1% and is resistant to fluctuations in terms of 
occlusion and noise. 

Index Terms—defect diagnosis, generative 
adversarial network, partial discharge, scalogram pattern, 
stacking features. 

I. INTRODUCTION 

ower transformers (PTs), a crucial portion of electrical 

equipment in the power system, are primarily 

responsible for either voltage decrease or increase [1]. 

Power equipment insulation is essential to maintaining 

the power system's safe and effective operation. However, the 

insulation of power equipment ages over time, and abnormal 
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environmental activities like mechanical, electrical, and 

chemical stresses hasten this process [2]. PD, a local insulation 

breakdown, will result from high-voltage (HV) power 

equipment's continuing insulation deterioration [3]. 

Machine learning (ML) and deep learning (DL) are vital in 

many data analytics and recognition fields. However, to 

perform exceptionally well, these defect diagnostic techniques 

must collect enough samples and balance the quantity of 

various defect sample types [4].  

Studies conducted for imbalanced datasets today can be 

broadly categorised into data-level and algorithmic levels. 

Data-level approaches directly rebalance imbalanced datasets 

to provide enough data information for prediction models. 

Positive samples are produced by oversampling techniques 

[5], and negative samples located in borderline or overlapping 

areas are sampled by under-sampling techniques [6]. 

According to [7], oversampling techniques are typically more 

successful than under-sampling. 

Synthetic Minority Over-sampling Technique [8] and its 

variations [9] create samples that resemble raw positive 

samples. Despite this, these techniques can produce more 

samples in regions with a dense distribution of positive 

samples and fewer in areas with a sparse distribution of 

positive samples. Finding the actual global distribution of 

data, especially PD data, is challenging. Unbalanced datasets 

have recently been rebalanced using generative adversarial 

network (GAN) [10]. Using Conditional Wasserstein GAN 

[11], the datasets are rebalanced. Similarly, [12] creates 

samples by adding global information about the actual data 

distribution to the discriminator and generator. 

For several decades, various representations of PD pulses 

have been used, including spectrograms [13], time-domain 

waves, frequency domain, phase-resolve partial discharge [14 

& 15], and pulse sequence analysis. Furthermore, in the event 

of a multisource PD recognition, the pulse sequence analysis 

is ineffective in diagnosing the condition.  

The measured PD signals are corrupted by external 

interferences [16]. Wavelet transform (WT) [17], radial basis 

function [18], and translation in-variant WT [19] are some of 

the current contemporary de-noising techniques. However, 

WT requires manual determination of mother wavelets and 

decomposition stages, which is not a self-adaptive and 

automatic decomposition technique 

Developing new convolution neural network (CNN) 

architecture and its tuneable parameters fine-tuned by various 
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approach can be enhanced by providing the relevant features 

extracted from the CNN. The RReliefF feature selection is 

applied to stacked features and finds the pertinent and non-

redundant features from the dataset. The first two approaches 

select the top 43 features using merit scores and remove the 

remaining dataset. The confusion matrix of the proposed 

algorithm is shown in Fig. 10. 

 
Fig. 10. Confusion Matrix for the proposed algorithm 

 

In continuation, the second approach chooses the top 35 

features fed to RFE to find the optimal subset of features. The 

final selected list of features from the filter approach is then 

formed by combining the features chosen by RReliefF and 

Mutual information. RFE is then used to adjust these 

particular properties. The ideal subset of features is 

determined by choosing 15 features. 

D. Case 3: Practicality verification of proposed model 

The proposed baseline model is selected based on the 

above cases, and the model has been tested for practicality 

verification for the new field dataset from PT in substation. 

 

TABLE VI 

CROSS-VALIDATION ACCURACY OF CLASSIFIERS FOR 

PRACTICALITY DATASET 

Feature Extraction 
Practicality Dataset 

MLP KNN SVM LDA 

VGG 19 95.0 90.0 89.7 88.7 

IncpetionV2 91.0 91.2 88.8 85.4 

ResNet 101 85.0 87.2 87.2 86.1 

VGG 16 88.0 80.1 82.1 87.2 

Stacked Features 96.7 93.7 89.1 86.7 

 

The accuracy rate for various feature extraction pre-trained 

CNN models, along with the ML approach, is shown in Table 

VI. The MLP classifiers with stacked features (256*4) 

produce a better recognition rate of 96.7%, which is superior 

to other methods. The claim of the SDSF-EGAN model to PD 

data expansion is motionless in its beginning, and there are 

numerous problems well-intentioned of examination. Thus, to 

solve the issue mentioned above in recognizing the type of 

fault that occurs in the PT, an SDSF-EGAN model is 

proposed. The proposed work can tackle the dataset imbalance 

issue, generating a high-quality dataset and solving training 

instability. The proposed work performs better than the other 

baseline DNN models, with an accuracy rate of 96.7%. 

VI. CONCLUSION 

To improve GAN performance in producing unbalanced 

PD datasets, this proposed work uses SDSF-EGAN, an 

oversampling technique that takes advantage of the 

distribution properties of positive datasets. SDSF-EGAN 

presents three innovative techniques that provide thorough and 

trustworthy insights into the density distribution of positive 

samples, which are advantageous for the discriminator, 

generator, and shaping of generated samples, respectively. 

Results from practicality verification show that SDSF-EGAN 

significantly outperforms existing GAN-based techniques. The 

proposed work exhibits a better recognition rate even under 

highly imbalanced data proportions.  

Using matrices and statistical expertise, SDSF-EGAN 

explicitly improves the generated samples, opening up a wide 

range of intriguing related research avenues. The few 

drawbacks of the proposed algorithm are: (1) transforming the 

PD signal into scalogram patterns may increase the 

computation time and memory allocation during hardware 

implementation, but the recognition rate depends on the 

intensity of pixels of the scalogram pattern. (2) In a natural 

network setting, when training a learning model requires just 

an incremental fraction of the training dataset, the established 

approach might not function. Viewing the development of 

incremental/online learning as future work is possible. 
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