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This study endeavors to enhance the mechanical, tribological, and corrosion resistance attributes of 316L
stainless steel fabricated by powder bed fusion process. A comprehensive understanding of the material�s
performance is achieved by investigating the impact of different scanning patterns and energy densities on
tensile strength, compressive strength, hardness, porosity, roughness, and tribological behavior. Three
distinct scanning patterns—line scanning, spiral scanning, and chessboard-type scanning—were examined,
alongside a range of energy densities spanning from 30 to 95 J/mm3. Results indicated that a notable im-
provement in tensile strength, with enhancements of 20.9, 22.6, and 31.1% observed for line, spiral, and
chessboard-type scanning patterns, respectively, as the energy density of the laser increased from 30 to 95 J/
mm3. Remarkably, the chessboard-type pattern at 95 J/mm3 yielded the highest tensile strength recorded at
736 MPa, surpassing commercially available 316L material by 41%. Moreover, the compressive strength
experienced a slight increase of 1.3% (695 to 704 MPa), while hardness values exhibited a substantial 21%
rise (228 to 275 HV) when utilizing the chessboard-type scanning pattern at 95 J/mm3. Additionally, the
lowest coefficient of friction, at 0.39, was observed in specimens manufactured with the chessboard-type
pattern and at the highest energy density of 95 J/mm3, indicating superior tribological performance. The
corrosion rate decreases with increase in energy density (E) due to reduced porosity and improved bonding
in the material, enhancing corrosion resistance. The chessboard scanning pattern showed the best per-
formance, making it ideal for manufacturing 316L orthopedic implants.
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1. Introduction

316L stainless steel emerges as a prime choice for
biomedical applications, thanks to its robust corrosion resis-
tance, exceptional ductility, absence of phase transformation,
and stellar mechanical properties (Ref 1-3). The ‘‘L’’ designa-
tion in 316L denotes its low carbon content, less than 0.03%,
significantly reducing the risk of carbide precipitation, thereby
preserving its corrosion resistance and strength. Enriched with
chromium, nickel, and molybdenum, it showcases remarkable
corrosion resistance even under elevated temperatures. As a
result, 316L finds widespread utility in fabricating machinery

for chemical processing, medical apparatus, maritime hardware,
and beyond (Ref 4). Notably, its resistance extends to crevice
and pitting corrosion, prevalent in chloride-rich environments,
further solidifying its status as a material of choice across
diverse industries. The remarkable strength and biocompatibil-
ity of stainless steel have made it a mainstay in orthopedic
surgery for decades. Its applications span a wide range of
implants, both established and innovative (Ref 5, 6). Stainless
steel 316L can be a suitable material for both orthopedic
implants (Ref 7) and dental crowns (Ref 8, 9). A dental crown
acts as an artificial cap fixed over a damaged or weakened
tooth. It can restore the shape, size, and strength of the original
teeth and also give a nice appearance. Dental crowns are
usually made from metal (Ref 10), porcelain (Ref 10), or a
combination of both (Ref 11). Numerous orthopedic implants,
both old and new, have made substantial use of stainless steel.
Some flexible nails, early prototypes of rigid intramedullary
nails, orthopedic plates, screws, and sliding hip screws are
typically made using it. Braided stainless steel wires are a
typical material for constructing cerclage cables.

Today, casting, forging, or extrusion is used to make
stainless steel items. However, manufacturing of complex-
shaped 316L stainless steel especially for biomedical applica-
tions such as orthopedic plates limits the use of conventional
manufacturing methods (Ref 12). In addition, conventional
manufacturing methods are time-consuming processes for
making complex shapes. The best alternative to overcome the
negative effect of conventional manufacturing processes is the
additive manufacturing (AM) process. Moreover, due to the
possibility of recycling the feedstock, AM can be seen as a
material-saving method and has gained significance in recent
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properties across all samples for line and spiral scanning
patterns were inferior compared to the chessboard-type pattern.
The spiral scanning pattern yielded samples with the lowest
roughness, ranging from 4 to 3.3 lm as energy density varied
from 30 to 95 J/mm3. Relative density ranged from 88 to 90%
at 30 J/mm3 and reached 98% at 95 J/mm3 for all samples
additively manufactured with different scanning patterns.
Friction and wear of additively manufactured samples de-
creased as energy density increased from 30 to 95 J/mm3 for
respective scanning patterns. The lowest coefficient of friction,
0.39, was observed in samples additively manufactured with a
chessboard-type pattern at a energy density of 95 J/mm3.
Higher energy density induces elevated melting temperature,
accelerated cooling rate, and increased local melting and
solidification, thereby influencing the material�s microstructure
and subsequent mechanical properties. Higher energy density
and chessboard scanning minimize porosity, enhancing corro-
sion resistance in additively manufactured 316L stainless steel.
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