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A B S T R A C T

Electrochemical sensors enable rapid and accurate detection of targets. However, fouling is a burden that re-
stricts sensor performance in complex biofluids and fouling resistant or fouling-free property is paramount to 
guarantee the reliable operation of sensors. Single-walled carbon nanotubes (SWCNTs) possess an exceptional 
catalytic capability owing to the weak molecular adsorption of sp3 carbon. Poly(aniline-N-propane sulfonic acid) 
(PAPS) polymer dispersed SWCNTs with a high conductivity (4.184 S/cm), and hydrophilicity were prepared to 
circumvent the fouling issues. The length of the PAPS dispersed SWCNTs were 3.1 ± 1.0 μm and the modified 
screen-printed carbon electrodes (PAPS-SWCNTs/SPCEs) demonstrated efficient electro-oxidation of purines, 
such as, uric acid (UA), xanthine (XA), and hypoxanthine (HX) after exposure to high concentrations of a 
common foulant, serum albumin. The peak-to-peak separations of UA–XA, XA–HX, and UA–HX were 0.396 V, 
0.352 V, and 0.748 V, respectively. The detection limits of UA, XA, and HX were 0.047, 0.049, and 0.052 μM 
respectively. The practical applicability of the sensor was established using human serum and synthetic urine 
samples. The fabricated sensor is fouling-free and could serve as a potential diagnostic device for the early 
detection of renal diseases, such as renal calculi, chronic kidney diseases, and renal failure in resource-limited 
settings, since it does not require scrupulous sample pretreatment, frequent recalibration or prolonged waiting 
times. Moreover, the developed sensor adheres to ASSURED criteria, which is crucial for the diagnosis of renal 
diseases in resource-limited settings.

1. Introduction1

The frequent and existing challenge of electrochemical sensors is 
fouling or interference, leading to poor sensitivity and selectivity. In 
biological samples, the common foulant is serum albumin. To overcome 
this constraint, fouling resistant or fouling-free sensor materials are 
paramount to guarantee their reliable operation [1–4]. Hence, stable, 
and cost-effective fouling free materials are crucial in fouling free sen-
sors fabrication. To date, different macromolecular materials such as 

zwitterionic materials, poly(ethylene glycol), poly(3-octylthiophene), 
proteins, and peptides have been explored to deal with fouling issues 
[5,6]. To completely circumvent fouling, well-dispersed single-walled 
carbon nanotubes (SWCNTs) are ideal electrode modifiers [7]. Hence, 
Pristine SWCNTs have captivated considerable practical interest owing 
to their unique quasi-one-dimensional structure, mechanical strength, 
electrical conductivity, and chemical stability. Nonetheless, pristine 
SWCNTs have high surface energy to form bundles or entangled ropes. 
The hydrophobicity and significant inter-tube van der Waals interaction 

Abbreviations: (SPCE), screen-printed carbon electrode; (SWCNT), single-wall carbon nanotubes; (FE-SEM), field-emission scanning electron microscope; (EDX), 
energy-dispersive X-ray spectroscopy; (TEM), transmission electron microscopy; (XPS), X-ray photoelectron spectroscopy; (CV), cyclic voltammetry; (ASA), active 
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SWCNTs [67]. Despite considerable advancements, conjugated poly-
mers still face several challenges on their path towards biosensing ap-
plications. These challenges include their complex structure, synthesis, 
and tendency to phase separate, resulting in multiphase arrangement 
with limited morphological stability.

Recently, efficient and simple methods for dispersing SWCNTs in 
aqueous media have focused on hydrophilizing CNTs with molecules 
that non-covalently bind to the CNT surface. This non-covalent func-
tionalization holds great promise, as it minimizes the modification- 
induced changes in the electronic and mechanical properties of CNTs. 
Previously, we have utilized poly(2-dimethylaminoethyl methacrylate- 
co-styrene) poly(sodium 4-styrene sulfonate-r-LAHEMA) to increase the 
aspect ratio of SWCNTs [68]. Considering all these aspects, in this study, 
a simple PANI polymer, PAPS was employed not only to disperse 
SWCNTs but also to achieve fouling-free sensing of the targets in varied 
biological matrices.

4. Conclusions

A highly conductive PAPS-SWCNTs-2 was prepared to establish an 
ultrasensitive electrochemical sensor that could be applied for the se-
lective and simultaneous quantification of purine metabolites, UA, XA, 
and HX. The PAPS-SWCNTs-2 provided abundant electrochemically 
active sites, and extraordinary electrical conductivity, which permitted 
the ultrasensitive quantification of purines. The selectivity results veri-
fied that the tested interferents had no apparent influence on the syn-
chronous estimation of purine metabolites. Furthermore, the 
repeatability and stability of the sensor are high. Moreover, the quan-
tification of UA, XA, and HX in human serum and synthetic urine sam-
ples showed appreciable recoveries of approximately 100 %. This is a 
conceptual study for the fouling free, ultrasensitive and convenient 
sensor preparation technique. It takes less than 10 min because PAPS- 
SWCNTs-2 is drop-casted directly on the electrode surface. A further 
advantage of our approach is the simple and simultaneous purine 
detection in human serum and synthetic urine. This involves a simple 
sample dilution with no requirements for separation or purification 
steps. The results indicate the favorable properties of the PAPS-SWCNTs- 
2/SPCE sensor for determining small purine metabolites in the presence 
of large albumin biomolecules, which do not influence the analysis.
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