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Abstract
NiTi SMAs, also known as Nitinol, are well-known and widely used due to their unique properties. This study predicts the 
transformation behaviour of a binary near-equiatomic shape memory alloy (SMA) during thermal cycling using empiri-
cal and ANN-based models. The input data was generated through thermal cycling tests using a differential scanning 
calorimeter (DSC) under a nitrogen atmosphere, wherein the maximum and minimum temperatures were varied based 
on the transformation temperatures of the alloy. Three different models, i.e. symmetrical, asymmetrical and artificial 
neural network (ANN), were developed to understand the transformation behaviour of the alloy using the same set of 
test data for validation. For qualitative and quantitative comparisons of the model, priority was given to the simplicity 
of the model (minimum variables) and the accuracy of the prediction. The results show that the ANN-based model can 
predict the transformation behaviour more accurately (99.81%) as compared to the conventional empirical models, i.e., 
symmetric (96.64%) and asymmetric models (98.14%).

Keywords NiTi SMA · Thermal cycling · Transformation temperatures · Gaussian model · Artificial neural network

1 Introduction

Shape memory alloys are a class of smart materials that have proven to be the most successful materials for engineer-
ing and medical applications due to their ability to exhibit two distinct properties: the superelastic effect and the shape 
memory effect [1]. In the superelastic effect, after undergoing deformation under significant strain (~ 8%) by loading and 
unloading, they recover their original shape [2]. In the shape memory effect, they can revert to their original undeformed 
state when provided the stimulus at the stable deformed configuration. This process happens in two distinct phases: 
parent phase, i.e., austenite (A) and product phase, i.e., martensite (M) [3]. Generally, austenite is a high-temperature 
phase exhibiting higher crystal symmetry, and martensite is a low-temperature phase exhibiting lower crystal symmetry 
than austenite. In NiTi-based alloys, the crystal structure of the austenitic phase is B2 (cubic), and the martensitic phase 
is B19’ (monoclinic) [4, 5].

The mechanism of SME is based on microstructural changes caused by the phase transformations occurring between 
A and M. When SMA is deformed in its martensitic phase (low-temperature phase) followed by heating it, transformation 
to the austenitic phase (high-temperature phase) takes place. During this transformation, the alloy regains its original 
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shape with negligible residual strain [6]. Upon further cooling back to martensite, two possibilities are there, i.e., either 
it remains undeformed after cooling (one-way SME), or it transforms back to the deformed shape (two-way SME) [7, 8]. 
Throughout these transformations, four critical temperatures are defined, namely martensite start temperature  (Ms), 
martensite finish temperature  (Mf), austenite start temperature  (As) and austenite finish temperature  (Af), as shown in 
Fig. 1 [9–11].

The shape memory effect was first observed in an Au-Cd alloy, following which many systems (NiTi, Cu-, Fe-based) 
have been found to exhibit shape memory properties over the years [12]. Ni–Ti alloys (NitiNol) are among the most 
critical alloy systems because of their unique properties, such as SME, biocompatibility, high corrosion resistance, and 
high strength-to-weight ratio [13, 14]. NitiNol was discovered in 1962 by J Buehler and his team at the Naval Ordnance 
Laboratory, USA [15, 16]. NiTi alloys have found applications across different fields of science and technology, includ-
ing biomedical devices, dental equipment, aerospace and automotive components and robotic arms [10, 17]. Many of 
the applications for SMAs are based on SMEs, i.e., heating and cooling (repeatedly or occasionally), to trigger the phase 
transformation and shape change [18].

The prolonged use of SMAs in many applications may cause deterioration of functional properties of the alloys, and this 
degradation in functional properties, such as  Ms,  Mf,  As,  Af, recovery stress, recovery strain, stress hysteresis and thermal 
hysteresis, is called functional fatigue [19, 20]. This results from repeated cyclic phase transformations because several 
microstructural changes, such as the generation of crystal defects (dislocations) and the retention of retained martensite, 
occur [21]. SMA cycling is classified into thermal and thermomechanical cycling. Thermal cycling is a stress-free heating 
and cooling cycle, whereas thermomechanical cycling involves a heating and cooling cycle under constant stress [22].

Controlling the conditions during thermal cycling carefully minimizes functional fatigue and aging effects [23, 24]. In 
order to address these problems and make Nitinol more stable during thermal cycling, appropriate material selection, 
design considerations, and optimization of processing parameters are essential. This poses a need for computational 
modelling to design and optimize the operating parameters. Computational modelling has increased research efficiency 
due to its cost-effectiveness and time-efficient approach to studying and addressing the challenges associated with 
various aspects of materials.

It enables the exploration of material behaviour prediction and optimization of operating parameters, thereby con-
tributing to improved reliability and performance [25, 26]. In this study, the Gaussian symmetrical and asymmetrical 
double sigmoidal models were used because they converge more accurately with the experimental data than the other 
models, which are too complex or do not converge well. The ANN model was also developed to predict the behaviour 
more accurately than the empirical models. The primary objective of this work is to develop and study empirical models 

Fig. 1  DSC thermogram 
illustrating the transforma-
tion temperatures of a typical 
shape memory alloy (NiTi 
SMA) during heating and 
cooling
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to predict the transformation behaviour of Nitinol during thermal cycling. This study has developed two empirical mod-
els, i.e., Gaussian-based symmetrical and asymmetrical models, and an ANN-based model. All the models are developed 
using the same thermal cycling dataset.

2  Methodology

2.1  Experimental methodology

Ni50.7Ti49.3 (at.%) alloy sheet with a thickness of 0.5 mm was used in this study. This sheet was initially solutionized at 900 
°C for 3.6 ks, followed by water quenching at room temperature. Sheets with 3.5 × 3.5  mm2 dimensions were machined 
using a wire-cut electro-discharge machine from the solutionized sheet. These sheets were used as test specimens to 
conduct thermal cycling studies using a differential scanning calorimeter (Discovery DSC 25, made by TA Instruments) 
under the nitrogen atmosphere. The transition temperatures were determined by applying the tangent line method, as 
shown in Fig. 1. During thermal cycling, the alloys were repeatedly subjected to heating and cooling at a rate of 20 °C/
min within the temperature range of − 50 to 150 °C for 15 cycles (until the changes in the transformation temperatures 
are saturated). This is based on the transformation temperatures of the alloy chosen, i.e., binary NiTi SMA. All four trans-
formation temperatures, i.e.,  As,  Af,  Ms and  Mf, lie within this range, as shown in Fig. 1. More details about the experiment 
can be found elsewhere [27].

2.2  Empirical model

It can be clearly observed from Fig. 1 that both A → M and M → A transformation curves are asymmetrical. However, 
initially, the Gaussian (symmetrical model) was chosen to understand the transformation behaviour because of its sim-
plicity and preciseness compared with other models [28–30]. After the Gaussian curve was finalised for the model, the 
terms in the Gaussian equation were modified to fit the shape memory characteristics, as shown in Eq. 1.

where, H = Heat flow,  H0 = Initial heat flow (heat flow in the first cycle), T = Temperature, A,  Tc, and w are curve-shaping 
factors.

Characteristics of all these equation parameters were analysed. For simplification, the heating and cooling curves 
were separately analysed. It was done to optimise the empirical model by using distinct values of equation parameters 
for heating and cooling curves. Each parameter was individually analysed to determine the behaviour of ‘A’, ‘w’, and ‘Tc’ 
during thermal cycling. The parameter analysis mainly focused on the variation in shape memory characteristics with 
increasing cycles (n).

After successfully developing a symmetrical model and a basic understanding of the parameters, an attempt was made 
to improve its accuracy. The introduction of asymmetry in the model was necessary. Hence, the Double sigmoidal model 
was chosen after the rigorous analysis of various standard asymmetrical peak functions to achieve higher accuracy [31, 
32]. The equation of the Double sigmoidal model, shown in Eq. 2, was analysed like the Gaussian model.

where, H = Heat Flow,  H0 = Initial heat flow (heat flow in the first cycle), A,  TC, w1, w2, and w3 are curve-shaping factors.
Apart from A and Tc, there are three w(s), i.e., w1, w2 and w3. The ‘w’ factor alters the shape of the peak curve. These 

three w(s) bring the asymmetry, while if there was only w, it was perfectly symmetric like that of the Gaussian model. 
Similar to symmetrical modelling, the heating and the cooling data were separately analysed to optimize the value of 
equation parameters and find their relationship with the number of cycles (n).
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2.3  Artificial neural networking model

Artificial neural networking (ANN) is a subset of machine learning (ML) algorithms designed to recognise patterns, learn 
from data and make predictions. Without prior knowledge of the System, ANN can predict the output based on the 
valid input in the dataset. ANN is inspired by the biological neural network of the human brain [33, 34]. The structural 
building blocks of this network are called perceptron. Once the input data is fed into the ANN, it multiplies the data with 
weights, the optimised values associated with the connection between neurons. The mathematical function of a neural 
network is given in Eq. 3. Every perceptron solves this equation (Eq. 3) and transfers the data to the next perceptron to 
solve the same equation but with the optimum weight assigned to that perceptron. The collection of these connected 
perceptrons is called a neural network.

where, y is the model output,  Wo is the bias,  Wi is the weights corresponding to neurons,xi is the input data, and g(x) is 
the activation function.

The heating and cooling cycles were separately modelled using ANN in this study for simplicity and better accuracy. 
The experimental data was divided into training data (80%) and testing data (20%). Mean absolute error was taken as an 
accuracy parameter. The developed ANN model for heating and cooling cycles had eight hidden layers, with the input 
variable being temperature and the output variable being heat flow and Linear activation function for the output layer. 
Relu Activation function was used in the hidden layers to introduce non-linearity to the model. ‘rmsprop’ optimiser was 
used because of its better convergence rate.

3  Results and discussion

3.1  Empirical model

3.1.1  Symmetrical model

The characteristics of all these equation parameters were analysed. For simplification, the heating and cooling curves 
were separately analysed. It was done to optimise the empirical model by using distinct values of equation parameters 
for heating and cooling curves. To determine the behaviour of model parameters, such as ‘A’, ‘w’ and ‘Tc’, during thermal 
cycling, each of these parameters was individually analysed, as shown in Fig. 2. This analysis mainly focused on the vari-
ation in these model parameters with increasing number of cycles (n) in terms of a mathematical expression, as shown 
in Table 1.

Based on the parameters obtained through these expressions, the model was validated with the experimental data 
for two different cycles chosen arbitrarily, as shown in Fig. 3. Moreover, it was found that adj. R-Square, a measure used 
in regression analysis to assess the goodness of fit of a model, of the Gaussian curve was found to be 0.9664, i.e. 96.64% 
was the model’s accuracy.

By incorporating the modified equation parameters, as shown in Table 1, the Gaussian equation gives the modified 
Gaussian model equation (Eq. 4).

For validation purposes, the above equation, Eqn, gives the output data. Equation (4) was compared with the experi-
mental output data of thermal cycling experiments obtained from differential scanning calorimetry. The model devel-
oped was compared with two different cycles, i.e., the 2nd and the 6th no. of cycles, which were chosen arbitrarily, to 
confirm the reproducibility of the model developed. As evident, the experimental heat flow varies asymmetrically with 
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Fig. 2  Plots showing the variation of symmetrical model parameters, such as A, Hc and W, during heating (a, c, e) and cooling (b, d, f), 
respectively
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temperature, but the Gaussian model is symmetrical about its peak, as shown in Fig. 3. Although the model is not perfect, 
it can be used to understand the nature of the parameters of the curve.

3.1.2  Asymmetrical model

Similar to the Gaussian model, the asymmetrical model was developed and modified by incorporating the number of 
cycles with each varying model parameter, as shown in Fig. 4. The variations were determined similarly to the Gaussian 
model, and the expressions correspond to those parameters listed in Table 2. The asymmetrical model has 98.14% accu-
racy (Adj-R squared = 0.9814), which is better than that for the symmetrical (Gaussian) model. This asymmetrical model 
can predict the transformation behaviour and the transformation temperatures more precisely than the Gaussian model.

After the relation between the model parameters with respect to the number of cycles is known, the asymmetrical 
model gives the final equation of the transformation curve, as shown in Eq. (5). The output of this equation (Model 
output) was now compared with the experimental data. Figure 5 shows that both the experimental and the modelled 
curves are asymmetrical; hence, this asymmetrical double sigmoidal model closely predicts the heat flow pattern at a 
given temperature.

3.2  ANN model

For the cooling cycle, the validation loss of the cooling half was minimised to 1.43 ×  10–6, and the corresponding train-
ing loss for that particular epoch was 6.48 ×  10–6. For the heating cycle, the validation loss was minimised to 1.32 ×  10–6, 
and the corresponding training loss of the same epoch was 5.3214 ×  10–6. The mean absolute error of the heating cycles 
was minimised to 0.0025, while it was minimised to 0.0012 for cooling. If the mean absolute error is taken as a metric of 
accuracy for the ANN model, then it comes out to be the average of heating (99.75%) and cooling (99.88%), i.e., 98.14%. 
The accuracy of prediction is the highest for the ANN model (99.81%) as compared to the symmetrical (96.64%) and 
asymmetrical (98.14%) models.

From Fig. 6, it can be seen that the ANN model has accurately predicted the transformation behaviour of the NiTi SMA 
during thermal cycling. Unlike the empirical model, this simple ANN model does not provide the guiding equation but 
predicts the transformation behaviour directly once the input (no. of cycles and temperature) data is provided. However, 
the present study is limited by the use of a specific NiTi alloy composition and a controlled experimental setup, which 
may affect the generalizability of the empirical and ANN models. It also does not account for stress effects or long-term 
functional fatigue during extensive cycling. Future work can focus on expanding the dataset, exploring alloy composi-
tional variations and stress factors, and studying long-term durability to enhance the applicability of the models.
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Table 1  The relationship 
between the model 
parameters and the number 
of cycles(n) for the Gaussian 
model

Parameters Expressions

Heating
A(n) − 5.06–1.93 * e−0.027∗n

Tc(n) 62.21 + 8.95 * e−0.14∗n

W(n) 8.67 + 3.71e0.12∗n

Cooling
A(n) 6.24 + 0.40 e−0.23192∗n

Tc(n) 23.40 + 13.8 e−0.12∗x

W(n) 13.23 + (−3.02)

1+e
(
n−9.04
2.15

)
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Fig. 3  Comparison of 
Gaussian model with the 
experimentally obtained DSC 
thermograms: a 2nd cycle and 
b 6th cycle
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Fig. 4  Plots showing the variation of asymmetrical model parameters, such as A,  Hc  w1,  w2 and  w3, during heating (a, c, e, g, i) and cooling 
(b, d, f, h, j), respectively
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Fig. 4  (continued)

Table 2  Showing the 
relationship between 
model parameters and the 
number of cycles (n) for the 
asymmetrical curve model

Parameter Expression

Heating
A(n) (− 1.72) + (− 0.015)n + (3.16)*(0.09)n

Tc(n) 64.43 + 9.95*e−0.11n

w1(n) (− 1.16E−04) + (1.03E−05)n + (141.18) * (0.01)n

w2(n) 4.03 + 1.90 e−0.06n

w3(n) 30.40 + (− 1.06) * (1−e−
n

13) + (− 28) * (1−e−
n

0.18 )

Cooling
A(n) 1.54
Tc(n) 11.17 + 30.22 e(−0.042∗n)

w1(n) 6.32E−14
w2(n) 7.364 + (− 0.71 e(0.085∗n))
w3(n) (− 0.12) + (0.25*n) + (1.88)*(0.71)n
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Fig. 5  Plots show the com-
parison of experimental data 
and the asymmetrical model 
output of (a) the 2nd and (b) 
the 6th cycles
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4  Conclusion

This study focused on modelling the thermocycling behaviour of a binary NiTi shape memory alloy during thermal 
cycling. The heat flow at a specific temperature was first found experimentally using a differential scanning calo-
rimeter (DSC), and then the data was analysed for various cycles. Symmetrical, Asymmetrical and ANN models were 
developed using the same set of experimental data. The symmetrical model was simpler but was not so accurate 
(96.64%) because of the nature of the experimental output, which is asymmetrical. The asymmetrical model predicts 

Fig. 6  Plots showing the 
comparison between the ANN 
Model and the experimental 
output of a 2nd and b 6th 
cycle during thermal cycling
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the behaviour slightly better (98.14%) than the symmetrical model due to the expression’s inherent nature to accom-
modate the transformation’s asymmetrical nature. However, the ANN model is highly precise in predicting the trans-
formation behaviour of the NiTi SMA during cycling, with the prediction accuracy being 99.81%.
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