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Abstract: Tailoring the bandgap of a material is necessary for improving its optical proper-
ties. Here, the optical bandgap of high-entropy oxide Ce0.2Gd0.2Sm0.2Y0.2Zr0.2O2-δ (HEO)
nanoparticles was modified using Pr3+. Various concentrations of Pr3+ (x = 0, 0.01, 0.02, 0.05,
0.075, 0.1, 0.15) were incorporated into the host high-entropy oxide using a gel combustion
synthesis. After the gel combustion step, the powders were heat-treated at various temper-
atures (650 ◦C, 800 ◦C, 950 ◦C) for 2 h. The obtained Pr3+-incorporated HEO powders were
characterized using X-ray diffraction (XRD), field emission scanning electron microscopy
(FESEM), and UV–visible spectroscopy. The results indicate that, when the samples are
calcined at 950 ◦C, a single-phase cubic fluorite structure is obtained without any phase
separation or impurity. The optical absorbance red-shifts to higher wavelengths when the
concentration of Pr3+ is increased. This reduces the bandgap of the material from 3.15 eV
to 1.87 eV for Pr3+ concentrations of x = 0 (HEO-0) and x = 0.15 (HEO-6), respectively.
The obtained HEOs can be suitable candidates for photocatalytic applications due to their
absorbance in the visible region.

Keywords: high-entropy oxide; gel combustion; band-gap; solid solution; absorbance;
fluorite oxide

1. Introduction
High-entropy materials have made a significant progress in materials science research,

demonstrating excellent properties and a wide range of functional applications [1–3]. High-
entropy materials, including alloy systems first explored in previous studies, and other
material classes such as ceramics were investigated [1,4]. The entropy effect is one of the
four core effects pertaining to typical high-entropy materials, playing a significant role in
stabilizing a single-phase solid solution. Therefore, a variety of chemical compositions
can be prepared using the concept of high entropy. However, higher entropy does not
necessarily lead to the formation of a single phase, and other factors are involved, which is
a matter of debate.
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In recent years, the focus on high entropy oxides has increased due to their tailorable
properties, including magnetic [5,6], electrical [7], thermal [8], photoluminescent [9], elec-
tromagnetic [10], and better functional applications [11–15]. In the case of photocatalytic ap-
plications, the bandgap of a material determines the performance of a photocatalyst [16–19].
Natural sunlight contains ~5% UV, ~43% visible and ~52% infrared light, and most of the
metal oxides have optical absorbance in the UV region [20,21]. Therefore, the bandgap
of a material decides which wavelength of the available solar spectrum is effectively ab-
sorbed to generate electron–hole pairs. Usually, a material with lower bandgap is preferred,
so that the photocatalytic reaction can be performed using natural sunlight or a visible
light source instead of using a harmful UV–light source. In order to achieve this, various
strategies are utilized, such as varying the particle size [16,22], morphology [23,24], adding
dopants [25,26], forming heterojunctions [27,28], optimizing synthesis conditions [29–31],
etc. We have selected bandgap engineering by doping as it can be easily controlled by
optimizing the concentration of the dopant. For instance, the bandgap of typical CeO2 is
3.4 eV, allowing it to form electron–hole pairs solely using ultraviolet energy. This limits
the use of UV-absorbing photocatalysts such as TiO2, CeO2, ZrO2, HfO2, etc., in the visible
spectrum. To tailor the absorbance of a photocatalyst in visible regions, a variety of dopants
such as Pr [32], Fe [33], Cu [34], Ni [35], Bi [36], N [37] can be doped into the host oxide. This
decreases the bandgap of the material improving the photocatalyst performance. In addi-
tion, other modification strategies such as forming heterojunctions using ZnMn2O4, BaTiO3,
ZnO, CdS, Ag2S [38,39], and carbon-based materials [40,41] were employed to optimize
the electron–hole recombination behavior facilitating superior photocatalytic activity.

In general, the synthesis technique plays a crucial role in tuning the material prop-
erties, which impact its functional properties and applications [42–45]. Various synthesis
techniques such as chemical co-precipitation, solid-state, emulsion, gel combustion, hy-
drothermal, microwave-assisted were available to synthesize a variety of nanomaterial
systems ranging from metals to oxides. Among them, gel combustion is one of the most
widely used synthesis for obtaining a variety of nanoparticles. Gel combustion synthesis
combines the advantages of the sol–gel technique and combustion technique. In a sol–gel
technique, controlled particle size and stoichiometry are obtained. Similarly, combus-
tion synthesis forms nanoparticles with defects in terms of oxygen vacancies (for metal
oxide systems).

Therefore, in gel combustion synthesis, one can tailor the particle size and defects,
which play a critical role in functional applications [46]. In addition, the use of glycine can
act as a chelating agent, as well as fuel, during the combustion step, which is advantages [46].
Kumar et al. prepared GdAlO3:Dy3+ nanophosphors using a gel combustion with urea as a
fuel and the resultant oxide was used for white light applications [47]. Chavarriaga et al.
followed a gel-combustion synthesis to synthesize CoFe2O4, ZnFe2O4, and MgFe2O4 oxides
using 6-aminohexanoic acid as a fuel and explored its magnetic properties [48]. Similarly,
Portakal-Uçar et al. used a gel combustion technique using citric acid to prepare Zn2SiO4

co-activated by Ce3+ and Mn2+ ions and investigated its luminescence properties [49].
Kumar et al. synthesized Ni0.6Zn0.4GdyFe2-yO4 (y = 0, 0.1, 0.15, and 0.2) nanoferrite by gel
combustion using citate and explored its electrical conductivity [50].

Therefore, we are more interested in investigating the use of gel combustion
synthesis route to form high-entropy oxide nanoparticles. In the present study, we
use a gel combustion synthesis to produce various compositions of Pr3+-incorporated
high-entropy Ce0.2Gd0.2Sm0.2Y0.2Zr0.2O2-δ oxide nanoparticles. The rationale for se-
lecting the current composition as a host material lies in the wide bandgap nature of
Ce0.2Gd0.2Sm0.2Y0.2Zr0.2O2-δ oxide system [29]. Therefore, these materials exhibit photo-
catalytic activity in in the UV-region, which limits their use as flexible photocatalysts in
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the visible region. The use of the visible-light-activated photocatalyst will help to harvest
naturally available sunlight and visible light source, enhancing versatility of the photocata-
lyst. Therefore, with the help of Pr3+ incorporation, we are more interested in narrowing
the bandgap of Ce0.2Gd0.2Sm0.2Y0.2Zr0.2O2-δ oxide to absorb radiation in the visible region.
In the same way, Pr3+ was selected in the current study due to its mixed valance state,
including 3+ and 4+. Due to this, when Pr3+ was incorporated into a metal oxide lattice,
defects in terms of oxygen vacancies were created to balance the charge imbalance in the
system [51]. Likewise, the phase evolution of the prepared nanoparticles and the influence
of Pr3+ incorporation on the optical properties were investigated.

2. Results and Discussion
2.1. Structural Investigation

Scheme 1 describes the synthesis process involving gel combustion using glycine as
a chelating agent and fuel. When the metal salts and glycine are mixed together with
de-ionized water, the glycine molecules interact with the metal ions in the solution, forming
metal complexes. The formed metal complexes prevent the selective precipitation of
metal ions in the solution, ensuring higher homogeneity of the resultant oxides. During
heating, the water evaporates consistently, resulting in a transparent gel. As mentioned
earlier, glycine acts as a fuel during the combustion of gel, exhibiting a dual role. During the
combustion step, the resultant transparent gel swells, transforming into a foam, followed by
auto combustion. This process releases a large volume of gas, such as CO2, N2, H2O, and O2,
resulting in the formation of porous high-entropy oxide nanoparticles [52]. Heat treatment
was conducted in order to remove the any unreacted glycine and carbon produced during
the synthesis step.
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The phase evolution of HEO and Pr3+-incorporated HEO nanoparticles was investi-
gated at various calcination temperatures, such as 650 °C, 800 °C, and 950 °C, using XRD. 
The plot is displayed in Figure 1. When the samples are calcined at 650 °C and 800 °C 
(Figure 1a,b), all the broad peaks centered around 28°, 33°, 47°, 56° are indexed to a cubic 
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Scheme 1. Steps involved in the synthesis of HEO and Pr3+-incorporated HEO nanoparticles prepared
by gel combustion synthesis. (Left) Transparent gel formed after evaporation of water; (middle) initi-
ation of gel combustion; and (right) visual appearance of HEO and Pr3+-incorporated HEO nanopar-
ticles after heat treatment. HEO-0 (pure, x = 0), HEO-1 (x = 0.01), HEO-2 (x = 0.02), HEO-3 (x = 0.05),
HEO-4 (x = 0.075), HEO-5 (x = 0.1), and HEO-6 (x = 0.15).

The phase evolution of HEO and Pr3+-incorporated HEO nanoparticles was inves-
tigated at various calcination temperatures, such as 650 ◦C, 800 ◦C, and 950 ◦C, using
XRD. The plot is displayed in Figure 1. When the samples are calcined at 650 ◦C and
800 ◦C (Figure 1a,b), all the broad peaks centered around 28◦, 33◦, 47◦, 56◦ are indexed
to a cubic fluorite structure (ICDD No: 01-085-0373, CeO2). In addition, minor impurity
phases are observed, pertaining to Gd2O3 (ICDD No: 01-073-6318). This confirms that a
single-phase fluorite oxide is not favorable and needs high temperature calcination. When
the calcination temperature was increased to 900 ◦C, the impurity phase disappeared, and
a single-phase fluorite oxide was formed. In addition, when the concentration of Pr3+ was
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increased (x = 0, 0.01, 0.02, 0.05, 0.075, 0.1, 0.15), we observed that the main peak shifted to
lower angles, indicating successful Pr3+ incorporation into the HEO lattice without forming
an additional phase (Figure 1d).
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Figure 1. XRD patterns of HEO and Pr3+-incorporated HEO nanoparticles prepared by gel combustion
synthesis calcined at various temperatures: (a) 650 ◦C, (b) 800 ◦C, and (c) 950 ◦C. (d) Enlarged XRD
pattern of the (111) plane for various samples heat-treated at 950 ◦C, showing a peak shift when
different concentrations of Pr3+ were incorporated into the HEO lattice. HEO-0 (pure, x = 0), HEO-
1 (x = 0.01), HEO-2 (x = 0.02), HEO-3 (x = 0.05), HEO-4 (x = 0.075), HEO-5 (x = 0.1), and HEO-6
(x = 0.15).

Rietveld refinement (FullProf Suit, Version: January 2021) was performed in order to
fit the experimental XRD pattern using a simulated pattern featuring cubic fluorite as a
crystal structure (space group: Fm-3m, cubic) (Figure S1) [53]. The atomic positions of metal
cations were (0,0,0), while the oxygen anion was (0.25,0.25,0.25). During the structural
refinement process, parameters such as background, scale factor, half-width parameters,
lattice parameter, atomic fractional position coordinates, and thermal parameters are
optimized. From the Rietveld refinement results, it is evident that the experimental data
aligned well with the simulated pattern, indicating the formation of a single-phase cubic
fluorite structure (Figure S1). The estimated lattice parameter from the Rietveld refinement
results is tabulated in Table 1. For the HEO-0 sample, the lattice parameter is 5.3368 Å. With
an increase in Pr3+ concentration, the lattice parameter increases from 5.3682 Å (HEO-1) to
5.3857 Å (HEO-6). The incorporation of larger Pr3+ ionic radii (1.126 Å) into the HEO lattice
makes the lattice expand, which can be supported by an increase in the lattice parameter
(Figure 2). In contrast, the micro-strain starts to reduce drastically from 0.00392 (HEO-
1) to 0.00078 (HEO-6) with an increase in Pr3+ incorporation, which is unusual. This is
expected to be due to the relaxation of the lattice rather than straining. For example, for the
HEO-6 sample, based on the elemental composition, all the principal elements involved are
nearly equiatomic, and the influence of Pr3+ does not significantly affect the HEO lattice, as
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expected at lower concentrations. A similar effect can be observed in the optical properties,
which will be discussed in a later section.

Table 1. Estimated lattice parameter and bandgap of HEO and Pr3+-incorporated HEO nanoparticles
prepared by gel combustion synthesis.

Sample
Lattice

Parameter *
(Å)

Crystallite
Size ** (nm)

Micro Strain
**

Bandgap ***
(eV)

HEO-0 5.3668 12.3 0.00233 3.15
HEO-1 5.3682 15.3 0.00392 2.96
HEO-2 5.3699 12.8 0.00279 2.59
HEO-3 5.3749 12.4 0.00214 1.99
HEO-4 5.3776 11.8 0.00154 1.91
HEO-5 5.3804 11.5 0.00072 1.89
HEO-6 5.3857 12.1 0.00078 1.87

* Estimated from Rietveld refinement. ** Estimated from W-H plot. *** Estimated from Kubelka-Munk plot.
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prepared by gel combustion synthesis calcined at 950 ◦C. HEO-0 (pure, x = 0), HEO-1 (x = 0.01),
HEO-2 (x = 0.02), HEO-3 (x = 0.05), HEO-4 (x = 0.075), HEO-5 (x = 0.1), and HEO-6 (x = 0.15).

The morphological nature of HEO and Pr3+-incorporated HEO nanoparticles prepared
by gel combustion synthesis was studied using an FESEM and is displayed in Figure 3. As
we know, the gel combustion synthesis resulted in a spongy-like textured nanoparticles
possessing micro- and nano-sized pores. During the gel combustion step, self-combustion
occurs, releasing a large volume of gases and resulting in porous nanostructures. With an
increase in Pr3+ concentration, there are no significant changes in the morphology and the
nature of the pores. However, the crystallite size estimation from the XRD pattern (Table 1)
is affected, which can enhance the catalytic and photocatalytic properties.

The elemental mapping of HEO and Pr3+-incorporated HEO nanoparticles prepared
by gel combustion synthesis is carried out in order to probe the elemental distribution of
various metal cations within the particles (Figures 4 and 5). The results show that all the
individual metal cations are evenly distributed within the particles, which is one of the
advantages of using a gel combustion synthesis. The mean elemental quantification was



Gels 2025, 11, 117 6 of 13

estimated from the EDS point scan averaging from 15 different locations and is tabulated
in Table 2. The results conclude that the concentration of individual metal cations is
similar across all locations and uniformly distributed, as supported by elemental mapping,
indicating better sample preparation.
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Table 2. Elemental quantification of HEO and Pr3+-incorporated HEO nanoparticles prepared by gel
combustion synthesis using an EDS point scan.

Sample
Element (Mean Atomic Percent) *

Pr Y Zr Ce Sm Gd

HEO-0 0 19.21 ± 5.12 16.96 ± 3.45 20.03 ± 2.31 24.38 ± 3.53 19.42 ± 2.64
HEO-1 0.47 ± 0.58 21.44 ± 5.00 18.34 ± 3.61 18.90 ± 2.19 22.59 ± 3.58 18.27 ± 2.61
HEO-2 2.18 ± 0.63 20.74 ± 5.08 17.59 ± 3.54 19.14 ± 2.55 22.36 ± 3.59 17.98 ± 2.42
HEO-3 4.74 ± 0.57 19.45 ± 4.00 16.91 ± 2.82 18.39 ± 1.56 22.07 ± 2.91 18.45 ± 2.19
HEO-4 7.38 ± 1.02 20.23 ± 4.48 17.32 ± 3.14 17.15 ± 1.96 20.93 ± 2.75 16.99 ± 2.17
HEO-5 11.18 ± 0.76 21.03 ± 2.22 18.44 ± 1.59 16.42 ± 1.09 17.14 ± 1.05 15.79 ± 0.95
HEO-6 16.11 ± 1.67 16.96 ± 4.55 14.83 ± 3.36 16.59 ± 1.26 19.27 ± 3.45 16.24 ± 1.74

* The mean and standard deviation values are estimated from the EDS point scan probed at 15 different points of
the sample.
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2.2. Bandgap Engineering of HEO by Pr3+ Incorporation

The UV–visible absorption spectra for all the Pr3+-incorporated HEO systems is shown
in Figure 6. It is observed that for all the Pr3+-incorporated HEO samples, the absorbance
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values start to increase from 700 nm. However, in case of pure HEO, the absorbance
value blue-shifted to lower wavelengths. This is visually observed by the color of the
nanoparticles (Scheme 1). Pure HEO has a pale-yellow color, which gradually transformed
to dark brown with an increase in Pr3+ concentration. As a result of Pr3+ incorporation,
better absorbance in the visible region is achieved. The absorbance of all the samples can
be correlated to the charge transfer transitions existing between O2− and Me3+/4+ [29].
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Figure 6. UV–visible absorption spectra of HEO and Pr3+-incorporated HEO (a) and its corresponding
Kubelka–Munk plot to estimate the bandgap of the prepared oxides (b): HEO-0 (pure, x = 0), HEO-
1 (x = 0.01), HEO-2 (x = 0.02), HEO-3 (x = 0.05), HEO-4 (x = 0.075), HEO-5 (x = 0.1), and HEO-6
(x = 0.15).

The bandgap values estimated from the K-M plot (Figure 6b) are tabulated in Table 1.
For the pure HEO sample, the bandgap value of 3.15 eV is obtained. However, bandgap
narrowing occurred when Pr3+ was incorporated, and the bandgap values reduced to
1.87 eV (HEO-6). One can observe that at a lower Pr3+ concentration, there is a larger
variation in bandgap values for the samples between HEO-0 and HEO-2, and the change
is marginal for the samples between HEO-3 and HEO-6 (Figure 2). Overall, the change
in bandgap values due to Pr3+ incorporation can be explained as follows. One possible
reason is the role of oxygen vacancies or defects present in the system [54]. For example,
the HEO sample contains both trivalent and tetravalent cations. When tetravalent cations
are replaced by trivalent cations, due to charge imbalance, point defects in terms of oxygen
vacancies are created in the crystal lattice, as denoted by the Kröger–Vink notation [55]
(Equation (1))

Ox
o + 2Mex

Me −→ V••
o + 2Me′Me +

1
2

O2 (1)

where Ox
o and Mex

Me are tetravalent cations present in their respective lattice position, while
V••

o is the oxygen vacancy at the oxygen lattice position, and Me′Me is the trivalent cation
occupying the tetravalent position. Therefore, metal cations such as Ce4+ and Pr4+ can
be reduced to Ce3+ and Pr3+, respectively since they possess multiple oxidation states,
such as 3+ and 4+. The presence of oxygen vacancies in Pr3+-incorporated HEOs shifts the
bandgap to the visible region of the electromagnetic spectrum. However, due to limited
characterization capability, the exact quantification of oxygen vacancies will be carried out
in our future investigation.

Reports clarify that apart from oxygen vacancies, there are other possibilities for
the narrowing of the bandgap, such as the creation of intermediate energy levels due to
Pr3+ incorporation [56]. Therefore, in our case, the bandgap of HEO was modified by
introducing an intermediate energy level by Pr3+ incorporation (Figure 7) [57,58]. This
narrows the overall bandgap of the HEO system. Therefore, the bandgap of high-entropy
oxides can be tailored by Pr3+ incorporation, which is beneficial for applications such as



Gels 2025, 11, 117 9 of 13

photocatalysis where narrow bandgap values can absorb visible light. This can enhance
the photocatalytic activity just by utilizing natural sunlight or visible light without the
need of using extremely harmful UV-light sources. The current study will pave the way to
designing new photocatalytic systems and tailoring their optical properties.
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Figure 7. Proposed band diagram of pure HEO and Pr3+-incorporated HEO. Pr3+ incorporation
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bandgap of the material (MO-CB: metal oxide conduction band).

3. Conclusions
This study aimed to synthesize new high-entropy oxide Ce0.2Gd0.2Sm0.2Y0.2Zr0.2O2-δ

(HEO) nanoparticles by incorporating different concentrations of Pr3+ (x = 0, 0.01, 0.02, 0.05,
0.075, 0.1, 0.15). A simple gel combustion synthesis, using glycine as a chelating agent and
fuel, was used. A single-phase fluorite structure was obtained when the as-synthesized
samples were calcined at 950 ◦C without any phase separation. In all cases, Pr3+ was
successfully incorporated into the HEO lattice. Pr3+ incorporation had an effect on the
particle size, lattice parameters, and bandgap of the material. When Pr3+ was introduced
into the HEO lattice, an intermediate energy level was created, narrowing the bandgap
of HEO. The bandgap of HEO-0 was 3.15 eV, while after Pr3+ incorporation, the bandgap
was narrowed to 1.87 eV for HEO-6. Overall, the prepared nanoparticles can be suitable
candidates for photocatalytic applications due to their absorbance in the visible region. The
current study will give researchers an opportunity to explore the functional applications of
HEO nanoparticles.

4. Materials and Methods
4.1. Raw Materials

Yttrium (III) nitrate hexahydrate (Y(NO3)3•6H2O, 99.8 %, Sigma-Aldrich, Moscow,
Russia), Gadolinium (III) nitrate hexahydrate (Gd (NO3)3•6H2O, 99.9%, Sigma-Aldrich,
Moscow, Russia), Praseodymium (III) nitrate hexahydrate (Pr(NO3)3•6H2O, 99.9%, Sigma-
Aldrich, Moscow, Russia), Samarium (III) nitrate hexahydrate (Sm(NO3)3•6H2O, 99.9%,
Sigma-Aldrich, Moscow, Russia), Cerium (III) nitrate hexahydrate (Ce (NO3)3•6H2O, 99.9%,
Sigma-Aldrich, Moscow, Russia), Zirconium (IV) oxynitrate dihydrate (ZrO(NO3)2•2H2O,
99%, Sigma-Aldrich, Russia), and glycine (NH2CH2COOH, ≥99.0% (NT), BioUltra, Sigma-
Aldrich, Moscow, Russia) were used. All the materials were used as received, without any
further purification. Deionized (DI) water was used throughout the study.
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4.2. Synthesis

A simple gel combustion method was utilized for the synthesis of pure and Pr3+-
incorporated high-entropy oxide nanoparticles. Initially, the required amounts of individual
salts were weighed and added to the beaker. The concentration of total metal cations was
fixed at 0.005 moles throughout the experiments. Minimal DI water was added to dissolve
the salts until the formation of a clear solution. Next, glycine (the molar ratio of metal
cation to glycine was 1:1.4) was added and dissolved until a clear solution was obtained. A
transparent gel was formed when the resultant solution was heated on a hotplate (130 ◦C)
to evaporate the water. Next, the temperature of the hot plate was raised to 320 ◦C to
initiate the gel combustion reaction. After the combustion reaction was complete, the
resultant powder was calcined in a muffle furnace at various temperatures, such as 650 ◦C,
800 ◦C, and 950 ◦C for 2 h to decompose any unreacted glycine and precursor. In the case
of Pr3+ incorporation, various amounts of Pr3+ precursor were added to the above step to
form various Pr3+-incorporated HEOs. The sample code of pure and Pr3+-incorporated
HEOs is HEO-0 (pure, x = 0), HEO-1 (x = 0.01), HEO-2 (x = 0.02), HEO-3 (x = 0.05), HEO-4
(x = 0.075), HEO-5 (x = 0.1), and HEO-6 (x = 0.15).

4.3. Characterization

The phase evolution of pure and Pr3+-incorporated HEOs was investigated using XRD
(Rigaku Ultima IV, Rigaku Corporation, Akishima, Japan), consisting of a Cu target (Kα

radiation with a λ = 1.54 Å). The sample was scanned from 20 to 80◦ (scan speed of 1◦ per
minute) whose resolution is 0.0001◦. FESEM images were captured using a JEOL (JEOL
JSM-7001F, JEOL, Peabody, MA, USA) microscope operated at 20 kV, and the elemental
composition was estimated using an energy-dispersive X-ray spectroscopy (EDS) detector
(Oxford INCA X-max 80, Oxford Instruments, Oxford, UK) attached with the FESEM
instrument. The optical properties were investigated using a UV–visible spectrophotometer
(Shimadzu UV-2700, Shimadzu, Japan), in both absorbance and reflectance modes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels11020117/s1, Figure S1. Rietveld refinement plot of HEO
and Pr3+ incorporated HEO nanoparticles prepared by gel combustion synthesis, calcined at 950 ◦C:
(a) HEO-0, (b) HEO-1, (c) HEO-2, (d) HEO-3, (e) HEO-4, (f) HEO-5, and (g) HEO-6; Figure S2. W-H
plot to estimate the crystallite size of HEO and Pr3+-incorporated HEO nanoparticles prepared by gel
combustion synthesis, calcined at 950 ◦C: (a) HEO-0, (b) HEO-1, (c) HEO-2, (d) HEO-3, (e) HEO-4,
(f) HEO-5, and (g) HEO-6.
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