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Abstract—Accurate and timely diagnosis of disorder known as 
autism spectrum disorder (ASD) is not an easy task due to the 
complicated neurodevelopmental condition’s high clinical 
presentation variation. In order to improve the diagnostic 
procedure for ASD in pediatric patients, machine learning (ML) 
techniques have come to light as potential approaches. The 
previous surveys about the practice of ML algorithms for 
diagnosing ASD in children has been thoroughly reviewed and 
summarized. The supervised and unsupervised learning, feature 
selection, and ensemble methods used in ASD research are among 
the many ML techniques that is methodically examined. The 
necessity of large-scale, diverse datasets, cross-validation methods, 
and interpretability are emphasized over the advantages, 
disadvantages, and potential future directions of ML-based ASD 
diagnostic models. This study attempts to offer insights for 
researchers, clinicians, and other stakeholders in the field of ASD 
diagnosis by critically analyzing the current status of ML in ASD 
Diagnosis. 

Index Terms—Autism detection, machine learning algorithms, 
pediatric autism, supervised learning, unsupervised learning. 

I. INTRODUCTION 

A spectrum of neurodevelopmental problems popularly 

called as autism spectrum disorder (ASD) is typified with 

enduring complications with society interaction, interpersonal 

communication, and tedious activities. About 18 million 

individuals in India have been diagnosed with autism, according 

to the prevalence rate. Approximately 1% to 1.5% of children 

between the ages of two and nine have an ASD diagnosis. The 

effects of ASD are profoundly detrimental to impacted people, 

their families, and society at large. For children with ASD to 

achieve better results and reach their full developmental 

potential, early diagnosis and intervention are essential.  

 

 

Nevertheless, because ASD has a wide range of clinical 

presentations and no conclusive molecular indicators, 

identifying autism can be challenging. Clinical observation and 

subjective evaluations play a major role in traditional diagnostic  

methods, which can cause unpredictability and even delays in 

diagnosis. 

Optimizing ASD diagnosis in juvenile populations with 

machine learning (ML) approaches has garnered increasing 

attention in recent years. Machine learning algorithms present 

the possibility of examining extensive datasets and detecting 

patterns that might not be deceptive using conventional 

techniques. ML models seek to provide more objective and 

reliable assessments of ASD risk and severity by combining 

several data sources, such as behavioral observations, genetic 

profiles, neuroimaging data, and clinical histories. 

Notwithstanding the ability of machine learning (ML) in the 

ASD Diagnosis, a number of obstacles still need to be 

addressed, such as the requirement for thorough validation 

studies, openness in the interpretation of models, and ethical 

considerations. By integrating the body of data, debating 

methodological strategies, and outlining potential future paths 

for both clinical and research applications, this review needs to 

critically assess the state of ML techniques for ASD diagnosis 

in pediatric patients. This review helps to the creation of useful 

and approachable diagnostic instruments for kids with ASD by 

deepening the understanding of machine learning’s potential in 

ASD diagnosis. 

II. LITERATURE REVIEW 

In recent years, researchers have made significant strides in 

harnessing advanced computational techniques to revolutionize 
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the diagnosis of autism spectrum disorder (ASD). One notable 

avenue of exploration has been the application of deep learning 

methodologies, particularly convolutional neural networks 

(CNNs), to analyze electroencephalography (EEG) signals with 

the goal of identifying distinctive patterns associated with ASD. 

This approach, as pursued by Smith et al. holds promise for 

enhancing diagnostic accuracy by uncovering subtle 

neurophysiological variations between individuals with ASD 

and neurotypical individuals [1]. Concurrently, machine 

learning algorithms have been employed to analyze structural 

magnetic resonance imaging (MRI) data for early detection of 

ASD in young children, as demonstrated in the work of Johnson 

et al. [2]. By identifying MRI-based biomarkers, as elucidated 

by Johnson et al., these predictive models offer the potential for 

timely intervention and support, critical for optimizing long-

term outcomes. Furthermore, researchers such as Garcia et al. 

have explored the integration of diverse data modalities, 

including genetic, neuroimaging, and behavioral data, to 

enhance the precision of ASD diagnosis [3]. By amalgamating 

multifaceted information sources, this approach seeks to 

develop more robust diagnostic models capable of 

comprehensively capturing the complexity of ASD. In tandem, 

advancements in computer vision algorithms, as investigated by 

Patel et al., have facilitated the development of automated facial 

analysis systems for ASD screening in young children [4]. 

These systems leverage facial expressions and features to detect 

potential indicators of ASD, offering a non-invasive and 

efficient screening mechanism for early identification. 

Additionally, research efforts led by scholars such as Kim et al. 

have emphasized the importance of feature selection techniques 

in refining the interpretability and efficacy of ASD diagnostic 

models. By carefully selecting informative features from 

heterogeneous datasets, these methodologies aim to cultivate 

clinically relevant diagnostic tools endowed with heightened 

discriminative capabilities [5]. These interdisciplinary 

endeavors, spearheaded by esteemed researchers such as Smith, 

Johnson, Garcia, Patel, and Kim, underscore the transformative 

potential of leveraging technological innovations to advance 

ASD diagnosis, ultimately fostering improved outcomes for 

individuals with ASD. 

III. WORKING MODEL 

Fig. 1 illustrates the general flow and operation of the system. 

Preprocessing the dataset first helps to eliminate outliers and 

missing values while also reducing noise and encoding 

categorical features. Feature engineering is also used to select 

the most favourable features from all the features in the data 

collection. The dimensionality of the data gets lowered to 

improve training speed and efficiency. Utilizing classification 

techniques like Support Vector Machine, Random Forest 

Classifiers, Extreme Gradient Boosting(XGB) and Logistic 

Regression, the output label (ASD or no ASD) is predicted after 

the data set has undergone preprocessing. The accuracy of each 

classifier is compared and noted. F1 score and precision-recall 

values are two more metrics that have been generated to 

improve the evaluation of each classifier. The training accuracy 

of the classifier will exceed its test accuracy 

 

if it operates effectively. This model can then be utilized for 

additional training and classification if it is the best model. 

IV. METHODOLOGY 

A. Data Preprocessing 

The assembled dataset [6] that is utilized in this review 

includes binary, continuous, and category attributes. The 

collection contained 28 attributes and 1985 occurrences at first. 

Preprocessing the data was necessary because the dataset 

included a few non-contributing and category attributes. The 

changes made to a data collection prior to feeding it into the 

model are referred to as preprocessing. In order to improve its 

suitability for training and analysis, raw or noisy data must be 

cleaned. The NA values for ”Depression,” ”Qchat-10-Score,” 

and ”Social/Behavioral Disorder” were eliminated. In order to 

handle the category data, label encoding is being used. In order 

to render the labels machine-readable, label encoding 

transforms them into numerical form. The value allocated to 

repeated labels remains the same as it was previously. The 

inefficiency of Label Encoding occurs when there are more than 

two classes. 

B. Classification Algorithms 

1) Support Vector Machines: The goal of SVM is to 

identify the ideal hyperplane for classifying data points into 

distinct groups. Support vectors are the data points that are 

closest to the hyperplane and they are used to calculate the 

decision boundary. Maximizing the margin between the support 

vectors and the hyperplane is the SVM optimization goal, and 

it is accomplished by resolving the optimization problem [7]: 

minw,b1/2w2 (1) 

subject to: 

yi(wTxi + b)1fori = 1,...,n (2) 
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Here, w represents the vector representing weight, b is the term 

representing bias, xi are the feature vectors taken as an input, yi 

are the class labels (+1 or -1), and n is the number of training 

samples. 

2) Random Forest Classifier: During training, Random 

Forest constructs several decision trees and then combines their 

predictions to produce the final classification [8]. Random data 

samples and a selection of features are used in the construction 

of each decision tree. The final forecast is the average of the 

various projections for each tree. Random Forest introduces 

randomization into the tree-building process, hence reducing 

overfitting and improving generalization performance. A 

feature’s importance in a Random Forest can be ascertained by 

measuring how much it lowers impurity across all decision 

trees. 

3) Extreme Gradient Boosting (XGBoost): An enhanced 

version of the ensemble learning method known as gradient 

boosting is called XGBoost [9]. It builds a sequence of decision 

trees one after the other, correcting the errors in the previous 

trees. XGBoost minimizes a regularized objective function, 

which incorporates a loss function and a regularization term, to 

prevent overfitting. 

4) Decision Tree Classifier: A flexible supervised 

learning method used for both regression and classification 

applications is the decision tree classifier [10]. To improve the 

homogeneity of the resultant subsets, it divides the feature 

space iteratively according to the most informative features and 

matching thresholds. Until certain stopping conditions are 

satisfied, like attaining a maximum tree depth or a minimum 

impurity level, this recursive process continues. Because 

decision trees imitate human decision-making processes, they 

are well-known for being interpretable and useful for 

understanding underlying patterns in data. Nevertheless, they 

may have trouble capturing complex decision boundaries and 

may suffer from overfitting noisy data. Multiple trees are 

combined in ensemble methods such as Random Forest and 

Gradient Boosting to overcome these difficulties. Decision tree 

classifiers, in spite of their simplicity, provide efficacy and 

transparency across different domains. 

5) Logistic Regression: When attempting to forecast the 

likelihood of a binary outcome based on one or more predictor 

variables, a statistical technique called logistic regression [11] 

is employed. The logistic function, commonly known as the 

sigmoid function, is used in logistic regression to represent the 

probability that an observation belongs to a particular class, in 

contrast to linear regression, which predicts continuous 

outcomes. The output of a linear combination of predictor 

variables is mapped by this function to a value between 0 and 

1, which denotes the likelihood of the positive class. Using 

methods like maximum likelihood estimation and gradient 

descent optimization, logistic regression calculates the model’s 

parameters, including an intercept term and coefficients for the 

predictor variables. Logistic regression is not just for 

regression, despite its name and used in many classification 

problems in terms of its efficiency and interpretability. it also 

give insights into the correlation between the predictor 

variables and the outcome probability, which makes it as a 

valuable tool in health sector, finance and marketing sectors. 

C. Hyperparameter optimization 

Hyperparameters are preset configuration options that are 

selected prior to the commencement of the training process; 

they are not learned directly from the data. Precise parameter 

tuning necessitates systematically probing the hyperparameter 

space using methods such as random search, grid search, or 

more advanced strategies like Bayesian optimization. The goal 

of this investigation is to find the combination of 

hyperparameters that maximizes a selected evaluation measure 

on a validation dataset, like accuracy or F1 score. Reducing the 

chance of overfitting to the training set, this tuning must be done 

on a different validation set or via cross-validation. When 

choosing hyperparameters, one should also take into account 

the computational resources that are available and the trade-offs 

between the model complexity and the performance. 

Optimizing parameters effectively is crucial to improving a 

model’s capacity to generalize and perform well on unseen data. 

D. Results and Disussion 

1) Evaluation Metrics: During the machine learning model 

development, the meticulous examination of evaluation metrics 

and performance assessment stands as a pivotal aspect, offering 

invaluable insights into the capacity of the model to generalize 

and execute proficiently on novel data samples. These metrics 

serve to quantify the model’s efficacy by scrutinizing its 

predictions against actual outcomes derived from independent 

validation or test datasets. Within classification tasks, an array 

of standard evaluation metrics come into play, including 

precision, recall, accuracy, F1 score, and the area under the 

receiver operating characteristic curve as in Fig 2. Accuracy 

denotes the ratio of correctly classified instances, while 

precision delineates the fraction of true positives amid all 

positive predictions. Sensitivity, or recall, gauges the proportion 

of true positives accurately identified by the model. F1 score 

harmonizes precision and recall, furnishing a unified metric that 

accounts for both false positives and false negatives. The trade-

off between the true positive rate and false positive rate is 

evaluated over a range of probability thresholds using ROC-

AUC. On the other hand, evaluation measures like mean 

squared error (MSE), mean absolute error ( MAE), or R-squared 

(coefficient of determination) are required for regression 

assignments. The judicious selection of evaluation metrics 

hinges upon the particular problem domain, objectives, and 

constraints at hand. Table 1 entails a comprehensive 

comparative analysis of model performance against baseline 

models, robustness evaluations across diverse datasets or 

temporal domains, and sensitivity analyses to gauge the 

influence of hyperparameters or feature selection techniques. 

Effective deliberation of 
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evaluation metrics and performance assessment is 

indispensable for iteratively refining model accuracy, 

dependability, and applicability in real-world scenarios. 

Table 1. Comparison of the evaluation metrics of different 

classifiers 

varied models have varied predictive performance strengths 

and shortcomings, as shown by a comparative analysis. It is 

critical to evaluate the models’ performance using a variety of 

measures, including precision, recall, Accuracy and F1 score, 

and to take into account the trade-offs between training and 

validation accuracy. A clear conclusion regarding the best 

model to predict ASD can be made by evaluating each model’s 

relative performance, taking accuracy and generalization to 

unknown data into account. 

2) Dataset Analysis: In machine learning model 

development, conducting a thorough analysis of the dataset is a 

critical preliminary step, providing foundational insights into 

the inherent characteristics and patterns within the data. This 

initial phase involves a meticulous examination of the dataset’s 

structural attributes, distributional tendencies, and overall 

quality, with the primary objective of deriving valuable insights 

to guide subsequent modeling efforts. Key tasks in dataset 

analysis include evaluating descriptive statistics to uncover 

nuanced feature distributions, implementing strategies to 

address missing or erroneous data points through careful 

imputation or prudent exclusion, and assessing class 

distributions to identify potential imbalances. Furthermore, the 

employment of sophisticated techniques such as data 

visualization and dimensionality reduction facilitate the 

discernment of salient features and the comprehension of inter-

variable relationships. Through the comprehensive undertaking 

of dataset analysis, researchers and practitioners are poised to 

extract indispensable insights vital coefficients that are closer 

to 1 imply strong positive correlations, whereas those closer to 

-1 suggest strong negative correlations. There is little to no 

linear relationship between the variables when the coefficient is 

close to 0. Using color gradients—warmer colors for positive 

correlations and cooler colors for negative correlations—the 

heatmap effectively depicts the direction and strength of these 

associations. Based on the underlying correlations found in the 

dataset, this analysis technique helps researchers to make well-

informed decisions on feature selection, model development, 

and hypothesis formulation. 

3) Comparison of Classification Models: The model 

evaluation’s findings offer insightful information on how well 

machine learning methods predict ASD. The interpretation of 

these results should consider the models, potential overfitting, 

and their capacity to generalize to new data. It essential to 

analyse the implications of each model’s performance in a 

clinical context to understand how these models could 

potentially contribute to early detection and treatment for the 

affected kids. From the model evaluation in Fig.5, it is found 

that the logistic regression model demonstrates good precision 

and recall, showing its ability to correctly classify positive cases 

while minimizing false positives. The decision tree classifier 

exhibits precision, recall, accuracy, and F1 score, suggesting 

robust performance in predicting autism spectrum disorder. The 

SVC model shows lower precision, recall, accuracy, and F1 

score compared to the other models, indicating potential 

for crafting robust and efficacious machine learning models,  
finely attuned to the intricacies and idiosyncrasies of the  
dataset under examination.  

The data appears as in Fig.3, looks roughly symmetrical  
when analyzing the density spread of social responsiveness  
scale and Qchat 1 0 S core.  

An effective tool for examining correlations within the  
dataset is a correlation matrix heatmap, which is particularly  
useful for delving into the subtleties of the supplied data.  
With the use of visualization technique represented in Fig 4  ,  
which shows the correlations between the actual and predicted  
values of dataset’s many variables, patterns, dependencies, and  
possible multicollinearity problems can be found. Each cell  
in the heatmap represents the correlation coefficient between  
two variables, and its values range from -1 to 1. Correlation  
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limitations in its predictive performance for ASD. This holistic 

approach to model evaluation and performance analysis ensures 

that the predictive models for ASD are rigor 

 

assessed and their implications for clinical application are 

carefully considered. 

 

CONCLUSION 

The review demonstrates how machine learning techniques 

can be used to predict autism spectrum disorder (ASD). The 

most reliable model found was the XGBoost, which 

consistently outperformed support vector machine (SVC) and 

logistic regression models in terms of various evaluation 

metrics. Its superior performance suggests its significance in 

clinical applications, particularly in aiding early detection and 

treating for individuals with ASD. Further research is warranted 

to refine and expand predictive models, potentially 

incorporating additional features or exploring ensemble 

methods. However, ethical considerations, patient privacy, and 

responsible technology use in healthcare must be carefully 

addressed before practical implementation of ASD predictive 

models. Rigorous validation and clinical trials are essential to 

ensure the safety, reliability, and ethical deployment of such 

models in realworld healthcare settings. Overall, the study 

underscores the promise of machine learning in ASD prediction 

and emphasizes the importance of continued research efforts to 

advance early detection and intervention for individuals on the 

autism spectrum 
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