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INTRODUCTION

The rapid advancement of mobile devices, 
their apps, and the volume of data captured by 
them bring about considerable increases in usage 
of bandwidth and network core congestion. Edge 
Computing responds to these inadequacies by 
increase the cloud notion to the network’s edge, 
where competent nodes can carry out compute-in-
tensive operations. In recent years, edge computing 
has come up to help with mobile apps. For mobile 
applications with scarce resources, this paradigm 
makes use of vehicles as edge node devices to pro-
vide storage, computation, and bandwidth [1]. 

The continued development of Intelligent 
Vehicle Systems and the internet of vehicles as 
emerging technologies has altered vehicular edge 
computing (VEC). Computation offloading is a 

crucial problem in the dynamic environment. Al-
though a minority of offloading techniques are 
offered to improve the mobility, computational 
performance, priority, and offloading breakdown 
are rarely taken into account for optimization, 
making it problematic [2]. 

One possible solution for carrying out efficient 
delay-constrained applications on devices with 
limited computing resources is the computation 
offloading approach. Through computation offload-
ing, Vehicular Edge computing integrates process-
ing power into automobiles to provide computing 
services for other vehicles [3, 4]. Mobility has an 
impact on the communication environment, creat-
ing significant obstacles for computation offload-
ing. The suggested system in this study looks into a 
task offloading scenario for edge computing, such 
as smart cars and roadside equipment that might 
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work together to pool resources. The goals of 
Computational Offloading are to speed up com-
puting, conserve energy, bandwidth, and provide 
low latency. However, VEC offloading presents 
complicated resource management issues, making 
it mostly unavailable to the automotive industry 
[5]. Serverless computing has recently developed 
as a practical way to execute activities without the 
complexity of infrastructure administration [6]. 
The scenario makes the primary impact on task 
offloading in vehicular edge computing environ-
ment. The task offloading needs to consider the 
environment parameters. The major objectives of 
the proposed system are given below.
 • Optimize task allocation in vehicular edge 

computing environments.
 • Adapt to varying task sizes that allows an ef-

ficient offloading to the edge.
 • Minimize the latency and improves the system 

performance by exploring the solution space 
and ensuring efficient resource utilization

 • The evaluation results demonstrate that the 
proposed methodology outperforms existing 
algorithms such as Energy aware offloading, 
No offloading, and random offloading in terms 
of system performance and energy efficiency.

RELATED WORK

The field of task offloading in edge comput-
ing has witnessed significant research interest in 
recent years, with numerous approaches proposed 
to optimize resource allocation and improve sys-
tem performance. A variety of techniques have 
been explored, including heuristic algorithms, 
optimization-based methods, and genetic algo-
rithm-based approaches as follows.

Shaohua Cao et al. [7] presented a technique. 
which combines fuzzy inference and reinforce-
ment learning to optimize task offloading. By ac-
curately identifying peak and low hours and ef-
fectively offloading computational requests, the 
method outperforms benchmarks by 24.8% in 
resource utilization. However, the system lacks 
detailed analysis of limitations and security con-
cerns. Nevertheless, the reinforcement learning 
algorithm shows promise in enhancing resource 
utilization in vehicular edge computing networks. 
Zheng Zhang et al. [8] used a genetic algorithm to 
optimize the cost and the time. of task offloading, 
taking advantage of the objective problem’s con-
vex feature for quick convergence. While their 

strategy demonstrated superiority in task offload-
ing delay and cost compared to alternatives. The 
dynamic changes in the edge computing environ-
ment were considered and relied on the assump-
tion of a convex objective problem. 

Homa Maleki et al. [9] address key param-
eters such as average offloading cost, energy con-
sumption, and delay in transmission and process-
ing phases. The system suggested an algorithm 
for task offloading in moving vehicles that com-
bines Double Q-learning with deep reinforcement 
learning. The strategy aims to minimize average 
offloading cost by considering energy consump-
tion and delays. User equipment is able to acquire 
offloading cost performance and make well-in-
formed offloading decisions by means of deep 
reinforcement learning using double Q-learning. 
However, the result analysis lacks a detailed dis-
cussion of the limitations or potential challenges 
associated with this approach in vehicular envi-
ronments and fails to provide a comprehensive 
comparison or analysis of existing strategies. 
Simulation results, however, show the low-cost 
performance of the suggested scheme in compari-
son to other offloading decision strategies in the 
literature, indicating its efficacy.

Leila Ismail et al. [10] investigated factors 
including crossover rate, population size, muta-
tion rate, and termination condition. But as the 
volume of requests rises, there are issues be-
cause of the division of processing power, which 
results in violations of deadlines and processing 
time constraints. Moreover, the algorithm fails 
to consider the effects of different vehicle speeds 
and overlapped multi-request processing, which 
could influence optimization results. On the 
other hand, QoS-SLA based algorithm performs 
better than the other algorithms, with an average 
total execution time of 13.98 seconds and no re-
quests that violate SLA limits.

Xingxia Dai et al. [11] considered a multi-
armed bandit (MAB) architecture to handle the 
issues associated with inadequate offloading in-
formation. In comparison to algorithms lacking 
service vehicle (SeV) capacity and truthfulness 
awareness, the learning regret by 39% to 41%. 
The method enhances SeV’s QoS and ensures 
safe V2V compute offloading. However, the 
algorithm does not explicitly address privacy 
leakage risks in V2V computation offloading, 
which could expose security and safety threats. 
Furthermore, the dynamic nature of vehicular 
roles across epochs and potential degradation of 
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QoS parameter are not fully accounted for in the 
algorithm, posing challenges to its applicability. 
Despite these limitations, the algorithm dem-
onstrates improvements in both SeVs’ QoS and 
safe V2V computation offloading.

Sumit Singh et al. [12] utilized genetic al-
gorithms and binary particle swarm optimiza-
tion (BPSO) to improve computation offloading 
in mobile edge computing (MEC) devices. The 
approach highlighted the superior performance 
of evolutionary algorithms in maximizing net-
work operator profit through efficient resource 
allocation and computation offloading strate-
gies. However, it lacks explicit discussion on the 
scalability and robustness of these algorithms in 
dynamic operational conditions. Additionally, 
practical challenges in real-world implementa-
tion are not thoroughly addressed. Nonetheless, 
simulation results demonstrate higher profitabil-
ity and faster execution times, showcasing the 
effectiveness of evolutionary algorithms in opti-
mizing C-RAN environments.

Yueyue Dai et al. [13] propose a novel algo-
rithm for VEC systems, integrating load balanc-
ing and offloading to optimize server selection 
and resource allocation. This algorithm shows 
swift convergence and superior performance 
compared to standard solutions, enhancing VEC 
system efficiency. However, scalability and the 
impact of varying network conditions require 
further exploration. Despite this, numerical re-
sults demonstrate its effectiveness in improving 
VEC system performance.

Muhammad Saleh Bute et al. [14] propose 
two algorithms for efficient task offloading in 
VEC networks. The service vehicles selection 
algorithm chooses suitable service vehicles 
based on criteria like link lifetime and task pro-
cessing cost, while the Task Offloading Decision 
Algorithm evaluates factors such as link life-
time and task completion time to determine task 
offloading. Although challenges remain, such as 
achieving longer link durations in highway sce-
narios and optimizing energy efficiency, the pro-
posed scheme shows promising results in various 
VEC network conditions. Huned Materwala et 
al. [15] proposed evolutionary genetic algorithm 
and used GPU based linear Regression models 
to analyze the energy consumption and explored 
three different offloading methods namely ran-
dom, genetic algorithm and no offloading and 
the parameters considered are the energy con-
sumption, latency and number of requests. The 

papers explore various techniques, including 
fuzzy inference, reinforcement learning, genetic 
algorithms, and deep reinforcement learning, to 
optimize task offloading decisions. While these 
approaches demonstrate promising results in 
terms of resource utilization, energy efficiency, 
and task completion time, they also face limita-
tions and challenges. Some of the common is-
sues include scalability, robustness in dynamic 
environments, privacy concerns, and limitations 
in addressing specific network conditions. The 
research finding indicates that task offloading is 
a crucial aspect of vehicular edge computing and 
that ongoing research is necessary to address the 
challenges and further improve the performance 
of these techniques.

SYSTEM MODEL

The system setup involves a number of user 
equipment (UE) and edge server (ES), with tasks 
being dynamically generated for each UE by a 
function according to the task arriving probabil-
ity. These tasks vary in size between the mini-
mum size and maximum size configured and 
computation density, which are crucial parame-
ters in determining whether a task should be pro-
cessed locally or offloaded. The model initial-
izes important parameters such as computation 
capacity, transmission capacity for each user 
equipment and the edge server, computational 
and transmission delay which represents the 
responsive time and energy consumption. The 
model includes separate entities to store the util-
ity function calculated which is later compared 
and used in strategy update in the offloading. 

Computation model

In the concept of edge computing, the effi-
cient offloading of tasks between the user equip-
ment and the edge plays an important role in 
system performance optimization. If the task is 
done locally the utility calculation considers pa-
rameters such as computation capacity, task size, 
computation delay and computation density. In 
contrast, when the task is offloaded, the utility 
function takes additional parameters including 
the transmission capacity of the UE, computa-
tion capacity of the edge, task size, computation 
density, computation and transmission delay, 
and the current edge loads.
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Communication model

In the communication model between user 
equipment and edge server, the decision to offload 
tasks is guided by key performance parameters 
ensuring efficient task processing. When tasks are 
executed locally within UEs, the primary consid-
eration is the computational capacity and compu-
tation delay of the UE and the complexity of the 
task. However, when tasks are transferred to the 
edge server for processing, additional variables are 
included. These include the computation capacity 
of the edge server, which determines its ability to 
handle the computational demands of offloaded 
tasks effectively. Additionally, the transmission ca-
pacity of the UE is assessed to ensure smooth data 
transmission to the edge server. The transmission 
delay parameter is critical as it sets the upper limit 
on task completion time. Furthermore, the current 
edge loads are evaluated to know about the avail-
ability of resources for task processing in the edge. 
Considering these parameters, the communication 
model aims to optimize task offloading decisions 
and system responsiveness to ensure efficient utili-
zation of edge computing resources.

INTEGRATED PARTICLE SWARM 
OPTIMIZATION AND GENETIC 
ALGORITHM FOR EDGE COMPUTING 

An innovative method for maximizing work 
distribution and resource usage in edge computing 
(EC) settings is the PSO+GA integrated algorithm. 
This approach provides a comprehensive solution 
to the problems caused by finite computational 
resources and dynamic network conditions in au-
tomotive contexts by merging the particle swarm 
optimization (PSO) and genetic algorithm (GA). 
Through directing each particle towards its own 
optimal solution, the cognitive component pro-
motes the exploitation of promising regions in the 
solution space. The solution is computed as the 
difference between the particle’s present location 
and its optimal position. Similarly, by navigation 
particles towards the global optimal solution that 
the entire swarm has discovered, the social ele-
ment promotes particle exploration of new regions 
in the solution space. The result is calculated as the 
discrepancy between the particle’s present location 
and the optimal position globally.

Each particle’s velocity in the solution space 
is updated based on the social and cognitive 

components, determining its direction and speed 
of travel. PSO iteratively updates particle loca-
tions and velocities to efficiently explore the 
solution space. The velocity update formula in-
corporates learning coefficients (c1 and c2) and 
a random number using the random function to 
balance exploration and exploitation:

 vi(t+1) = w · vi(t) + c2.r1 · (pbesti - xi (t)) + 
 + c2 · r2 · (gbest - xi (t)) (1)

where: velocity update of a particle is Vi(t + 1), 
weight is w, the acceleration coefficient c2, 
r1 and r2 refers the random values [0,1], 
personal best in swarm is pbesti, global best 
is gbest, and the current position is Xi(t).

A sigmoid function then translates the veloc-
ity into a new position for each particle. The sig-
moid function typically takes the form:
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This function transforms the velocity (ranging 
from negative to positive infinity) into a probabil-
ity between 0 and 1. This probability is then used to 
determine whether a bit in the binary solution vec-
tor is set to 1 (local processing) or 0 (offload to edge 
server). The fitness of a solution (particle position) 
is calculated as the total utility, often involving for-
mulas that consider factors like processing times on 
local UE vs. the edge server and power consump-
tion. The stochastic optimization algorithm known 
as the ”genetic algorithm” draws inspiration from 
the principles of natural selection and evolution. The 
population of candidate solutions are represented as 
chromosome. The algorithm goes through crossover, 
mutation, and selection processes in order to gradu-
ally evolve towards better solutions. By simulating 
biological processes, the genetic operators make it 
easier to explore and utilize the solution space. Fitter 
individuals are chosen for reproduction. Selection is 
the process of selecting individuals from the popu-
lation using fitness. In order to create children with 
characteristics inherited from both parents, cross-
over combines genetic material from specific indi-
viduals. By introducing haphazard modifications to 
the genetic makeup of the progeny, mutation fosters 
genetic diversity and delays premature convergence.
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where: Probability of selection is Pselect, Fitness of 
all individuals in population is FitPopulation 
and Fitness of individual is FitIndividual.
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GA progresses towards optimal solution and 
explores the solution space using successive gen-
erations of selection, crossover, and mutation. Ef-
fective search of the solution space is ensured by 
genetic operators and selection pressure, which 
maintain a balance between exploration and ex-
ploitation. PSO+GA integrated algorithm com-
bines the strengths of PSO and GA to optimize 
task allocation in VEC environments. In this 
approach, PSO is employed for global explora-
tion of the solution space, refining solutions it-
eratively and guiding particles towards promis-
ing regions. Meanwhile, GA introduces genetic 
diversity to the search space, promoting the dis-
covery of more efficient task allocation strategies 
through selection, crossover, and mutation opera-
tions. The proposed system navigates the solution 
space to find optimal task allocation strategies by 
integrating PSO and GA. The synergy between 
PSO’s swarm intelligence and GA’s evolutionary 
principles enhances the system ability to adapt to 
dynamic VEC environments, minimizing latency 
and maximizing resource utilization.

PSO is well-suited for global exploration of 
the solution space, while GA excels at local ex-
ploitation of promising regions. By integrating 
both algorithms, the PSO+GA approach achieves 
a balance of the exploitation, maximizing the like-
lihood of finding optimal solutions. Vehicular net-
works are characterized by dynamic conditions, 
including varying traffic and network conditions. 
The PSO+GA algorithm’s adaptability allows it 
to the environment, continuously optimizing task 
allocation and resource utilization. PSO’s swarm 

intelligence and GA’s genetic diversity accelerate 
the convergence process, enabling faster identifi-
cation of optimal solutions. The iterative refine-
ment and genetic exploration mechanisms work 
in tandem to efficiently search the converge to-
wards high-quality solutions. The PSO+GA algo-
rithm is scalable and flexible, capable of accom-
modating diverse problem domains and evolving 
requirements (Figures 1–3). 

SIMULATION SETUP

The simulation is tailored for the study of 
task offloading in VEC and it is done in python 
3.10 using the NumPy library which is particu-
larly suited for handling large, multi-dimensional 
arrays and executing mathematical functions on 
these arrays. The important attributes for the sim-
ulation which are listed in Table 1. The VEC Sim-
ulation class encapsulates the core logic of the 
simulation. The class orchestrates Initialization, 
evaluates the utilities for the UE and Edge Server 
based on capacity, task size, delay and energy 
consumed and the perform the computational 
offloading based on the algorithms implemented.

To introduce stochasticity, the simulation 
employs the random library, which simulates 
the probabilistic nature of task arrivals and the 
decision-making processes of UEs and edge 
servers. During execution, the simulation pro-
gresses through multiple episodes, where tasks 
are generated, utilities are computed, and strate-
gies are updated iteratively. Upon completion, the 

Figure 1. Integration of particle swarm optimization and genetic algorithm
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Figure 2. Implementation of particle swarm optimization

Figure 3. Implementation of genetic algorithm

Table 1. Simulation attributes
Parameter Values

NUE 20

NES 5

NEPISODE 500

Taskarrival_prob 0.5

Minimum Stask 2

Maximum Stask 6

PSO_MAX_ITER 100

PSO_POP_SIZE 20

GA_MAX_ITER 100

GA_POP_SIZE 20

GA_CROSSOVER_RATE 0.5

GA_MUTATION_RATE 0.4

simulation produces results, offering insights into 
the efficacy of task processing within the VEC 
framework. In addition to the setup, it’s vital to 
highlight certain parameters, such as the cross-
over rate, mutation rate, and probability of rep-
licator dynamics, which are constants within the 
simulation. These values are determined through 
extensive exploration of their efficiency within 
the current scenario, as depicted in Figure 4 of the 
simulation framework.

In Figure 4a, determining the ideal cross-
over rate, it was observed that the system per-
formed efficiently when the crossover rate in 
the Genetic Algorithm was fixed at 0.6 which is 
indicated in the line graph. The mutation rate, 
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illustrated in Figure 4b, is a parameter con-
trolling how likely individual chromosomes 
change during evolution. The iteration gives 
0.4 is the optimal mutation rate.

RESULTS AND ANALYSIS

Based on the simulation setup and parameter 
values in Table 1, the number of tasks executed 
in User Equipment is more than the number of 
tasks executed in edge as only the resource inten-
sive tasks are offloaded to the edge server. While 
offloading parameters such as delay, capacity, en-
ergy consumption is also considered. Figure 5 rep-
resents the number of tasks executed in each user 
equipment and the overall tasks processed locally 
is 4254 out of 4975 and number of tasks processed 

at edge is 721 out of 4975 which gives a task dis-
tribution rate of 85.51 % and 14.49% respectively. 

The number of tasks executed in local and 
edge by varying the computation and transmis-
sion capacity is illustrated in Figure 6. The result 
indicates the transmission capacity factor is in-
creased by 0.4, the number of tasks executed in 
the edge is decreased by an average of 20 tasks. 
The reason is the increase in transmission delay 
by 0.63% even though the edge device has more 
power. Similarly, for the proposed integrated al-
gorithm, the number of tasks processed at device 
is increased by 2%. 

The data presented in Figure 7 illustrates a 
notable trend regarding task offloading behav-
ior concerning task size variations. Specifically, 
when the task size, indicative of task intensity, 
is increased, the average number of tasks shifted 

Figure 4. (a) edge processing rate vs crossover rate (b) edge processing rate vs mutation rate

Figure 5. Distribution of tasks at edge and user equipment
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to the edge varies significantly between differ-
ent algorithms. For instance, when employing 
the PSO+GA algorithm, the average number of 
tasks offloaded to the edge increases substantial-
ly, reaching an average of 25 tasks. Utility factor 
indicates the energy consumption at each User 
equipment, this energy is consumed due to two 
factors. The energy taken by the system to com-
plete the task locally and the energy consumed to 
transmit the task to the edge server. If the Util-
ity factor is less, it indicates that the energy con-
sumed at that particular User equipment is less. A 

trend in system performance can be found when 
comparing against the computation and system 
delay shown in Figure 8. In UE 12, due to the 
high Computation and Transmission delay, it can 
be noted that the system does not perform well.

System performance is calculated to find 
the overall performance of the algorithm which 
will consider delay and energy consumed by 
UE and edge devices, with a similar trend to 
what is observed in Figure 9, when the num-
ber of tasks increases, PSO+GA tends to have a 
better performance.

Figure 6. Task distribution on computation and transmission capacity

Figure 7. Effect of task size on processing rate
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CONCLUSIONS

In this paper, random strategy, energy aware 
offloading and the integration of genetic algorithm 
and particle swarm optimization, were examined, 
each demonstrating distinct strengths across var-
ied scenarios. The GA+PSO displayed enhanced 
adaptability to varying task sizes, resulting in an 
average of 25 tasks offloaded to the edge, sur-
passing the performance of Random offloading. 

Energy efficiency varied, with PSO+GA showing 
lower consumption overall. Notably, system per-
formance correlated with computation and trans-
mission delays, emphasizing their optimization’s 
importance. When compared to already existing 
algorithms, the proposed PSO+GA outperformed 
these algorithms in system performance and less 
energy consumption. Further analysis revealed 
trends in task offloading behavior related to work 
size variations and consumption of energy, as 

Figure 8. System performance employing PSO+GA

Figure 9. System performance of different algorithms for various number of tasks
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well as utility factors and system performance as-
pects across different UEs and algorithms. These 
findings provide critical insights into future ve-
hicular edge computing techniques and algorith-
mic optimizations. 
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