
2024 International Conference on Smart Systems for Electrical, Electronics, Communication and Computer Engineering (ICSSEECC 2024)

979-8-3503-7817-7/24/$31.00 ©2024 IEEE 44

Performance Analysis of Parallelized PageRank

Algorithm using OpenMP, MPI and CUDA

Visali V S

Department of CSE

PSG Institute of Technology and Applied

Research

Tamilnadu, India

visali.vs.4903@gmail.com

Manimegalai R

Department of CSE

PSG Institute of Technology and Applied

Research

Tamilnadu, India

drrm@psgitech.ac.in

Noor Mahammad S K

Department of CSE

Indian Institute of Information Technology,

Design and Manufacturing

Tamilnadu, India

noor@iiitdm.ac.in
 Sunitha Nandhini A

Department of CSE

PSG Institute of Technology and Applied

Research

Tamilnadu, India

asn@psgitech.ac.in

Abstract— Web search engines have developed into a crucial

tool for effectively and quickly locating information among the

vast web data. The PageRank algorithm is essential for web

search as it measures the importance and relevance of web pages

based on their incoming links, allowing search engines to rank

results by prioritizing high-quality and authoritative content.

This ensures that users receive more accurate and valuable

information. The PageRank algorithm improves search engine

results by assigning a numerical weight to each element in a

hyperlinked set of documents, effectively measuring the

importance of web pages based on quantity and quality of links

pointing to them. With billions of web pages and an extensive

network of hyperlinks, the traditional sequential computation of

PageRank becomes impractical for timely and efficient

processing. Parallelization allows the algorithm to be

distributed across multiple processors or computing nodes,

enabling simultaneous computation of PageRank scores for

different web pages. The main objective of this work is to

parallelize the PageRank algorithm using OpenMP, MPI and

CUDA and to compare their execution time to find the optimal

one. OpenMP simplifies shared-memory parallelism, MPI

facilitates communication between distributed processes and

CUDA harnesses GPU power for high-performance parallel

processing in diverse parallel computing environments. The

experimental results demonstrate notable performance

enhancements through parallelization using different

technologies: OpenMP improves the algorithm's performance

by 49.7%, MPI by 62.4%, and CUDA by 84.3%. Hence, optimal

results are found when the PageRank algorithm is parallelized

using CUDA.

Keywords—PageRank Algorithm, Hyperlinks, Parallelization,

OpenMP, MPI, CUDA, GPU.

I. OVERVIEW OF PAGERANK ALGORITHM

 A. About the algorithm

 Search engines use a link analysis algorithm called
PageRank to assign a numerical weight to each element of a
hyperlinked set of documents, such as the World Wide
Web[6]. The algorithm is named after Larry Page, one of the
co-founders of Google, and it was developed by him and
Sergey Brin. The basic idea behind PageRank is to measure
the importance of web pages based on the structure of the
hyperlink graph. In essence, it views a link from page-A to
page-B as a vote by page-A for page-B. The page with more
hyperlinks receives more votes and has higher page-rank.

Mathematically, PageRank can be computed using Equation
(1).

𝑃𝑅(𝐴) = (1 − 𝑑) + 𝑑 (
𝑃𝑅(𝐵)

𝐿(𝐵)
+

𝑃𝑅(𝐶)

𝐿(𝐶)
+⋯+

𝑃𝑅(𝑁)

𝐿(𝑁)
) (1)

In Equation (1), PR(A) is the PageRank of page A, d is a
damping factor, usually set to 0.85, PR(B), PR(C), ..., PR(N)
are the PageRanks of pages that link to page A, and L(B),
L(C), ..., L(N) are the number of outbound links on pages B,
C, ..., N.

 The page-rank of a page is determined by adding together
the pageranks of all the pages that are linked to it, and then
dividing that total by the total number of outbound links on
all those pages. The pagerank calculation is an iterative
process, and it converges as the pageranks stabilize. The
algorithm is used by search engines to order search results,
with pages having higher pageranks considered more
relevant.

 B. Advantages and applications of PageRank algorithm

 The PageRank algorithm has several advantages that

contribute to its widespread application. One key strength lies

in its resistance to manipulation and spam, ensuring a more

authentic assessment of a page's importance based on genuine

link relationships rather than artificial tactics. Moreover,

PageRank offers a global perspective by considering the

entire link structure of the web. This comprehensive approach

provides a more accurate evaluation of a page's significance,

moving beyond simplistic counting-based algorithms.

Another notable advantage is the algorithm's adaptability.

Beyond its original application in web search, PageRank can

be seamlessly applied to various network types. This

versatility extends its utility to domains such as social

networks, citation networks, and recommendation systems,

making it a robust choice for a wide range of applications.

PageRank's scalability is a crucial feature, especially in the

context of the vast datasets encountered on the web. The

algorithm efficiently scales with the size of the network,

enabling the analysis and ranking of large amounts of

information without compromising performance. Turning to

its applications, PageRank plays a pivotal role in search

engine ranking. By evaluating the relevance and importance

of web pages, it significantly enhances the accuracy of search

results, thereby improving the overall user experience.

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

m
ar

t S
ys

te
m

s f
or

 E
le

ct
ric

al
, E

le
ct

ro
ni

cs
, C

om
m

un
ic

at
io

n
an

d
Co

m
pu

te
r E

ng
in

ee
rin

g
(IC

SS
EE

CC
) |

 9
79

-8
-3

50
3-

78
17

-7
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SS
EE

CC
61

12
6.

20
24

.1
06

49
54

2

48

adding more threads leads to extra overhead and doesn't

improve efficiency.

 MPI: The best performance is achieved with 4 processes,

as supported by Manaskasemsak et al. [4], who noted that

increasing the number of processes beyond this point adds

communication overhead, reducing scalability.

 CUDA: The excellent performance of CUDA in our study

matches the findings of Kumar et al. [2] and Duong et al. [11],

who also found that GPU acceleration significantly benefits

graph processing algorithms. This comparison confirms our

results and underscores the efficiency of CUDA for large-

scale PageRank computations.

Fig. 4 Execution Time for Varying Number of Threads using OpenMP.

Fig. 5 Execution Time for Varying Number of Threads using MPI.

Fig. 6 Execution Time for Varying Number of Threads using CUDA.

Fig. 7 Comparison of OpenMP, MPI and CUDA Implementations.

V. CONCLUSIONS

 The experimental results of parallelizing the PageRank

algorithm using OpenMP, MPI, and CUDA are

systematically analyzed, and the performance of each

parallelization technique is evaluated. The execution times

for varying numbers of threads (OpenMP), processes (MPI),

and threads per block (CUDA) are measured to understand

the scalability and efficiency of each approach. The study

demonstrated that CUDA outperformed OpenMP and MPI in

terms of execution time, indicating that the GPU-accelerated

parallelization using CUDA provided optimal results for the

PageRank algorithm. The CUDA implementation took

advantage of the parallel processing capabilities of GPUs,

resulting in significant speedup and improved efficiency

when compared to traditional CPU-based parallelization

methods. Profiling using gprof highlighted the pageRank()

function as a hotspot, emphasizing the need for optimizing

this portion of the algorithm. The experimental results further

supported the observation, as the parallelization techniques

influenced the execution time of this critical function. The

blocksize parameter in CUDA implementation showed a

noticeable impact on performance, demonstrating the

importance of tuning GPU-specific parameters for optimal

results.

 In summary, the comprehensive experimental results and

analysis presented in this work support the conclusion that

CUDA provides the most efficient parallelization approach

for the PageRank algorithm among other techniques such as

OpenMP and MPI.

REFERENCES

[1] Kohlschütter, Christian, Paul-Alexandru Chirita, and Wolfgang Nejdl.

"Efficient Parallel Computation of PageRank." In the 28th European
Conference on IR Research, London, UK, pp. 241-252, 2006.

[2] Kumar, Tarun, Parikshit Sondhi, and Ankush Mittal. "Parallelization of

PageRank on Multicore Processors." In the 8th International Conference,
BICDCIT, Bhubaneswar, India, pp. 129-140, 2012.

[3] Cevahir, Ali, et al. "Site-Based Partitioning and Repartitioning

Techniques for Parallel PageRank Computation." In the IEEE Transactions
on Parallel and Distributed Systems, pp. 786-802, 2006.

[4] Manaskasemsak, Bundit, Putchong Uthayopas, and Arnon Rungsawang.

"A Mixed MPI-Thread Approach for Parallel Page Ranking Computation."
In the OTM Confederated International Conferences, CoopIS, DOA, GADA,

and ODBASE, pp. 1223-1233, 2006.

[5] Desikan, Prasanna Kumar, et al. "Divide and Conquer Approach for
Efficient PageRank Computation." In Proceedings of the 6th International

Conference on Web Engineering, pp. 233-240, 2006.

[6] Duhan, Neelam, A. K. Sharma, and Komal Kumar Bhatia. "Page Ranking
Algorithms: A Survey." In IEEE International Advance Computing

Conference, pp. 1530-1537, 2009.

49

[7] Anakath, A. S., et al. "Optimization of PageRank Algorithm Using

Parallelization Method." In AIP Conference Proceedings, vol. 2755, No. 1,
2023.

[8] Yang, Chao-Tung, Chih-Lin Huang, and Cheng-Fang Lin. "Hybrid

CUDA, OpenMP, and MPI Parallel Programming on Multicore GPU
Clusters." In Computer Physics Communications, vol. 182, no. 1, pp. 266-

269, 2011.

[9] Mohamed, Khaled Salah, and Khaled Salah Mohamed. "Parallel
Computing: OpenMP, MPI, and CUDA." In Neuromorphic Computing and

Beyond: Parallel, Approximation, Near Memory, and Quantum, pp. 63-93,

2020.
[10] Rastogi, Shubhangi, and Hira Zaheer. "Significance of Parallel

Computation Over Serial Computation Using OpenMP, MPI, and CUDA."
In Quality, IT and Business Operations: Modeling and Optimization, pp.

359-367, 2018.

[11] Duong, Nhat Tan, et al. "Parallel PageRank Computation Using GPUs."
In Proceedings of the 3rd Symposium on Information and Communication

Technology, pp. 223-230, 2012.

[12] Zhou, Shijie, et al. "Design and Implementation of Parallel PageRank
on Multicore Platforms." In IEEE High Performance Extreme Computing

Conference, pp. 1-6, 2017.

[13] Yang, Chao-Tung, et al. "Performance Evaluation of OpenMP and
CUDA on Multicore Systems." In International Conference on Algorithms

and Architectures for Parallel Processing, pp. 235-244, 2012.

[14] Noaje, Gabriel, Michael Krajecki, and Christophe Jaillet. "MultiGPU

Computing Using MPI or OpenMP." In Proceedings of the IEEE 6th

International Conference on Intelligent Computer Communication and

Processing, pp. 347-354, 2010.
[15] Xia, Kun. "The Implementation of Parallel Computation on CPU and

GPU." University of Delaware, 2017.

[16] Graham, Susan L., Peter B. Kessler, and Marshall K. McKusick. "Gprof:
A Call Graph Execution Profiler." In ACM Sigplan Notices, vol. 17, no. 6,

pp. 120-126, 1982.

