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░ ABSTRACT- The system's ability to retain the equilibrium state during regular and under disturbance decides the power 

system stability. The power system stability is highly affected by continuous load variation, voltage variation, frequency variation, 

power flow variation, topology and the work environment. Hence the stability analysis is made to ensure the acceptable equilibrium 

state throughout the operation of the power system while meeting the demand. As there has been numerous inclusion of renewable 

energy sources into the electric network, there occurs challenge to maintain the equilibrium level of this decentralized supply with 

temporary needs. So, to establish this kind of scenario, a Decentralized smart grid control (DSGC) is developed. In DSGC, demand 

is evaluated with supply through price information and the customers are allowed to decide on usage based on Pricing. The optimal 

hyperparameter tuning through grid search optimization for DSGC stability prediction is presented in this paper. The local frequency 

provides the details on equilibrium/power balance, to match supply with demand. Using an ensemble grid search optimization 

approach, we examine the power grid performance on dynamic stability. Our findings imply that DSGC stability is best predicted 

by ensemble gradient boost machine grid search with best R2 index performance and accuracy of 93.92%. 
 

Keywords: Hyperparameter Tuning, Grid Search Optimization, Grid Stability Prediction, Ensemble Machine learning, 

Distribution system. 

 

 

 

░ 1. INTRODUCTION   
The integration of renewable energy sources has influenced the 

demand-supply characteristics of a power grid. The major 

challenge faced while integrating renewable resources is the 

fluctuations in power generation that varies with time during a 

single day [1]. To adapt and regulate the demand for electric 

power [2] requires a massive shift in the power grid operation 

paradigm by providing an appropriate demand response [3,4] 

based on the consumption behaviour of the consumers. The 

increase in the decentralized generation of power requires a 

bidirectional flow of power and information between the 

consumers and producers to balance generation and demand. 

The smart grid can enhance demand response with bidirectional 

flow of electricity [5] and information and communication 

technology (ICT). However smart grid requires advanced cyber 

security and privacy-preserving mechanisms [6,7] for 

information security as it is vulnerable to cyber threats and 

attacks resulting in cascading failures. For an alternative, a 

decentral smart grid control (DSGC) [8]} has received greater 

attention recently in grid stability. A DSGC can be applied to 

maintain grid stability by providing real-time pricing. Stability 

can be predicted by determining the demand based on local grid 

frequency. A DSGC offers effective measures to determine the 

stability of the grid [9,10] by incorporating details about 

electricity pricing, adapting to the fluctuation and variations in 

frequency using the demand response characteristics of a 

particular participant. 
 

Data mining [11,12,13] has been widely applied for predicting 

load, angular stability, and transient stability [14-24] of a power 

system [25-27]and so on. We have applied ML algorithms [28] 

to foresee the grid stability problem using feature selection and 

seven ML algorithms. The ML algorithm performance depends 

on the features used for selecting relevant and significant 

features, improving the performance and reducing the 

complexity of the model. Hence, the feature selection algorithm 

[29] helps to select significant, relevant and consistent features 
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for model evaluation. Feature selection methods can be 

commonly grouped into a filter, wrapper & embedded methods. 

The various feature selection algorithms are Pearson 

correlation, rank-based selection, recursive feature elimination, 

information gain, principal component analysis, etc. In the 

existing literature, the most widely used Machine learning 

algorithms are Logistic Regression, Linear Discriminant 

Analysis, Linear Regression, Classification and Regression 

Trees (CART) [30], Learning Vector Quantization (LVQ), K-

Nearest Neighbors (KNN), Naive Bayes (NB), Support Vector 

Machines (SVM) [31], RF (Random Forest) [32], Bagging and 

Boosting for predicting the grid stability. We have developed 

seven machine-learning algorithms, like Linear regression 

(LR), K-Nearest Neighbour (KNN), Decision Tree (DT), Ada 

Boost (AB), Gradient Boosting Machine (GBM), Random 

Forest (RF), and Extra trees (ET), that utilize the Pearson 

correlation feature selection algorithm. The dataset is accessed 

from the University of California Irvine Database Repository 

using Vadim Arzamasov Electrical Grid Stability Simulated 

Data to predict the grid stability. The dataset contains three 

parameters, namely grid participants reaction times under 

varying grid conditions (tau), each participants electricity 

generation/consumption volumes(P), and the cost-sensitivity 

(g). ML algorithms are evaluated based on performance metrics 

such as MAE (Mean Absolute Error), MSE (Mean Square 

Error), RMSE (Root Mean Square Error) and R-Squared error. 

The grid search optimization technique selects the optimal 

hyperparameters of the model. The experimental evaluation 

shows that the ensemble Gradient Boosting machine has shown 

good performance improvement with 93.6% prediction 

accuracy over the developed algorithms and other 

unconventional techniques. 
 

The main contributions of this paper can be summarized as 

follows: 
 

(i) Measures the seven machine learning algorithms 

performance for the DSGC system through the Z-score 

normalization technique and compare these algorithms based on 

the performance metrics. 

(ii) Summarize the grid search parameter tuning performance 

and finalize the machine learning model, which has 

significantly improved prediction accuracy. 
 

The rest of the paper is presented as follows: section 2 defines 

and quantifies the DSGC system and stability issues; section 3 

illustrates the involvement and implementation of ML 

algorithms in the DSGC stability dataset; section 4 provides the 

performance evaluation metrics for measuring the ML 

algorithms performance; The discussion about the significance 

of proposed algorithm in the classification of stability in section 

5 and section 6 summarizes the conclusions.  

 

░ 2. RELATED WORK 
Data mining and ML algorithms are applied to analyze and 

predict demand-side load management, stability, economic 

dispatch, security, time-series forecasting, etc. In this section, 

we discuss the literature relevant to electrical grid stability. 

The author in [33] studied the electric grid stability using fuzzy 

rule-based classification (FRBC). A strength Pareto 

evolutionary optimization algorithm (SPEA) is used to optimize 

the structure and fuzzy parameters. The FRBC-SPEA obtained 

a classification accuracy of 91.1% and 85.5% on training and 

testing data. The study presented in [34] applied SVM, KNN, 

Logistic regression, NB, Decision tree and neural network for 

the classification of the grid stability dataset. The authors have 

pre-processed the data using min-max normalization and used 

70% data for training and 30% for algorithm performance 

testing. The experimental evaluation reveals that the decision 

tree algorithm achieved a classification accuracy of 99.90% 

when compared with other models. 
 

The study in [35] applied three feature selection algorithms for 

selecting the significant features for predicting the result. For 

stability prediction, the authors developed linear regression, 

random forest, gradient boost tree and multilayer perceptron 

(MLP) classifier. The combination of MLP classifier and binary 

particle swarm optimization achieved a classification accuracy 

of 93.8% when compared with other models. 
 

The authors in [36] applied a MLP and support vector machine 

(SVM) model to the Brazilian southeast dataset for predicting 

the stability problem of the high dimensional power system. 

The performance result of SVM is better than MLP with the rate 

of 3.2% and 11.7% as false dismissal and false alarm, 

respectively. 
 

In [37] studies about the electric grid stability problem with 

various parameters using an artificial neural network to predict 

the operation condition within a power system were carried out. 

The developed model achieved a good performance of result 

with a 2.5% average absolute error. 
 

The study in [38] analyzed the effect of cyber-physical attacks 

using the IEC-61850 protocol to identify malicious smart grid 

devices. The authors applied machine learning algorithms like 

SVM, RF and CNN (Convolution Neural Network) on 37500 

experiments and achieved 95.1% accuracy with a 0.03% false 

positive rate. 
 

The disturbance of the power system under various faulty 

conditions is evaluated to find the transient instability in the 

Iranian national grid. The experiments are conducted on the 9-

bus system to predict transient instability using Artificial Neural 

Network (ANN), SVM and DT models. The DT model 

achieved better performance with an accuracy of 99.91% than 

other models. The authors in [39] also used DT techniques for 

the classification of DSGC stability status using the response 

from heterogeneous consumers, and the obtained evaluation 

accuracy was 80%. 
 

An active learning approach is proposed in [40] for predicting 

voltage stability problems using ML methods like DT, ANN, 

SVM, RF, and radial basis function networks. The prediction 

performance of Random Forest is higher with an accuracy of 

90% when compared with other ML models. 
 

The stability of the Smart Grid depends on its ability to deliver 

a constant power supply based on demand. In our study, we 

have investigated the performance of an ensemble algorithm 

with a reduced feature subset built with seven machine learning 

models, namely LR, RF, KNN, DT, ET, AB and GBM for 

https://www.ijeer.forexjournal.co.in/
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prediction of grid stability. Initially, the models are trained, and 

then their performance is evaluated based on testing data 

through metrics. A comparison has been made based on 

prediction accuracy. 
 

Then, the standardization of data has been made for individual 

algorithms and is integrated to execute the ensemble-based 

prediction result. 

 

░ 3. PROPOSED WORK 
The materials and methods have been described in this section.  

It contains four subsections: dataset description, Preprocessing, 

data partitioning/splitting, and the proposed stacked ensemble 

classifier. For performing the regression task, we follow the 

steps of data preprocessing, apply K-fold cross-validation to 

divide the data into training and testing and then test the model 

after training the model. Then measure the performance metrics 

and use an ensemble grid search optimization to improve the 

prediction accuracy when the individual regression algorithm 

does not produce the best accuracy at the time of deployment. 

 

3.1 Dataset Used 
Data Set of Vadim Arzamasov Grid Stability Data accessible 

since Nov2018 at the University of California Irvine Repository 

(https://archive.ics.uci.edu/ml) is used as the primary set.  
 

The model shown in the figure.1(a) illustrates about the actual 

elements of power generation along with the utilization of loads. 

In figure.1(b) DSGC structure with boundary conditions for all 

three input variables. 
 

 
 

Figure 1.  (a)Actual elements of power generation along with the 

utilization of load. (b) Structure of the DSGC system for all three 

input variables 
 

The description about the dataset is shown in Table 1. The data 

set consist of 10000 records of DSGC system with 12 input 

attributes (11 predictable and 1 non-predictable) and 1 output 

attributes. 
 

The Vadim Arzamasov Grid Stability Data is significant 

because it provides a comprehensive dataset specifically 

designed to evaluate and enhance the stability of power grids. 

This dataset includes various features that are critical for 

analyzing grid performance and predicting potential stability 

issues. 
 

Three key factors of the model are: 

(i) Pn: Power balance, illustrating the power produced when 

n=1 or power consumed when n = 2, 3 and 4 

(ii) taun: Individual participants reaction time during change in 

an electricity price, and 

(iii) gn: Price elasticity co-efficient. 
 

░ Table 1: Attribute details 

 

3.2 Preprocessing 
Data preprocessing is transforming the unprocessed data into 

understandable data. So, data preprocessing is done to improve 

the quality of data. Two tasks were performed in data 

preprocessing, namely normalization and feature selection. 
 

 
Figure 2.  Correlation of Attributes 

Description of Attribute Mean 

Std 

Deviatio

n 

tau1: Reaction time of electricity 

producer in sec 
5.25 2.742 

tau2: Reaction time of electricity consumer 1 

in sec 
5.25 2.742 

tau3: Reaction time of electricity consumer 2 

in sec 
5.25 2.742 

tau4: Reaction time of electricity consumer 3 

in sec 
5.25 2.742 

p1: Nominal power produced 3.75 0.752 

p2: Nominal power consumed by consumer 1 -1.25 0.433 

p3: Nominal power consumed by consumer 2 -1.25 0.433 

p4: Nominal power consumed by consumer 3 -1.25 0.433 

g1: Gamma coefficient proportional to price 

elasticity of Producer 
0.525 0.274 

g2: Gamma coefficient proportional to price 

elasticity of consumer 1 
0.525 0.274 

g3: Gamma coefficient proportional to price 

elasticity of consumer 2 
0.525 0.274 

g4: Gamma coefficient proportional to price 

elasticity of consumer 3 
0.525 0.274 

stab: Maximal real part of the characteristic 

equation root (if negative—the system is 

linearly stable) 

 

0.016 0.037 

https://www.ijeer.forexjournal.co.in/
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Z-score normalization techniques are used to scale the data in 

attributes to fit within a narrower range. Since all the features 

of the dataset may not help you build a machine learning model 

to make the prediction, the Pearson Correlation feature selection 

technique is used. Pearson correlation is commonly used to 

measure the relationship between related linear variables, and 

from the figure 2 it is clearly understood that the attributes such 

as nominal power produced, Consumer 1, 2, 3 Nominal power 

consumption have the least significance for high prediction of 

result. 

 

3.3 Data Partitioning/Splitting 
The data set is split into a training dataset and a testing dataset 

in this stage. The dataset is partitioned into two parts as 80% for 

training and 20% for testing. The training dataset is to fit the 

machine learning model and testing data to evaluate the 

machine learning model's performance. Thus, the train-test split 

is used to analyze the behaviour of machine learning algorithms 

during the prediction process by choosing the test data, which 

is different from training data. Cross-validation is a simple 

method primarily used in applied machine learning to measure 

the performance of machine learning models against invisible 

data. We used 10-fold cross-validation because the dataset is 

unbalanced. This approach randomly divides a set of 

observations into ten equal groups. The first convolution is 

treated as a test set, and the method fits into the remaining nine 

groups. Then evaluate your ability to customize machine 

learning models and use indicators to compare their 

performance. 

 

3.4 Proposed Stacked Ensemble grid search 

Optimization 
The proposed stacked ensemble grid search optimization 

architecture is as shown in figure 3. 
 

To create a baseline for the performance, spot-check several 

different algorithms such as LR, Elastic Net, Lasso, KNN, 

SVM, DT, AB, GBM, RF and Extra trees. All these algorithms' 

accuracy is compared for mean and standard deviation. 
 

 
 

Figure 3.  Grid search optimization architecture 

 

We evaluate the model using repeated k-fold cross-validation 

and report the model's errors. 
 

Graphically through accuracy distribution, the performance of 

the algorithm is compared using box and whisker plots as 

illustrated in figure 4. 
 

 
Figure 4.  Graphical comparison of algorithm using Box and 

Whisker plots 
 

From the result generated, an accuracy distribution for ET 

(Extra Trees) is encouraging with low variance suggestion. 
 

Next, we automate machine learning workflows with pipelines 

and improve the performance with boosting ensembles 

techniques (BET) such as Ada Boost and stochastic gradient 

boosting. 
 

BET generate a sequence of models that attempt to correct the 

error of the models before them in the sequence. Once built, the 

models make predictions that can be weighted based on their 

accuracy, and the results are combined to produce a final 

prediction of output. To improve performance, two popular ML 

algorithms have been used by boosting ensembler such as Ada 

Boost and Stochastic Gradient Boosting. 
 

Algorithm performance is improved through the parameter 

tuning process, and the best model for the problem is finalized. 

The grid search parameter optimization approach was used to 

tune the parameters and evaluate the model for each 

combination of algorithm parameters specified in a grid R-

squared error assessed with other models. 
 

When optimizing machine learning models, several 

hyperparameter tuning techniques can be considered besides 

grid search. One popular alternative is random search, which 

randomly samples hyperparameters from a specified 

distribution. This method is often more efficient than grid 

search as it can cover a larger search space with fewer iterations. 

Another advanced technique is Bayesian optimization, which 

builds a probabilistic model of the objective function and uses 

it to select the most promising hyperparameters iteratively. 

Genetic algorithms and evolutionary strategies are also used for 

hyperparameter tuning, leveraging concepts from evolutionary 

biology to evolve the best hyperparameters over successive 

generations. Finally, Hyperband is a more recent approach that 

combines random search with early stopping to efficiently 

https://www.ijeer.forexjournal.co.in/
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allocate resources to the most promising hyperparameter 

configurations. These techniques offer various trade-offs in 

terms of efficiency, complexity, and performance, providing 

multiple options for optimizing machine learning models. 

 

░ 4. PERFORMANCE EVALUATION 

METRICS  
Model evaluation is important for understanding the 

performance of models. The performance measurement of the 

stratified K-fold cross validation ensemble grid search 

algorithm for stability prediction through measure of 

performance metrics is discussed in here. The prediction 

accuracy of grid search algorithm is measured in terms of MAE 

(mean absolute error), MSE (mean square error), RMSE (root 

mean square error) and R-square error. 
  

MAE: Mean Absolute Error (or MAE) is the sum of the absolute 

differences between predictions and actual values as 

represented in equation 1. It provides how much wrong the 

predictions (magnitude of the error) are, but does not provide 

the idea of the over or under prediction. 
 

1

1
( )

N

j j

j

MAE R P
N =

= −
                                                 (1) 

 

Where N is number of data points; s real output; is predicted 

output. 
 

MSE: MSE is the sum of square of prediction error which gives 

an absolute value on how the predicted results are deviated from 

the actual one. It gives a real value to compare over the result 

of other models and identifies to select the best regression 

model. 
 

2

1

1
( )

N

j j

j

MSE R P
N =

= −
                                                      (2) 

                                            

RMSE: It is estimated by taking the square root of MSE and is 

commonly used due to two major reasons. 
 

(i) Big value of MSE 

(ii) RMSE generates the error with easy interpretation 

 

2

1

1
(R )

n

j j

j

RMSE P
N =

= −
                                                  (3) 

R- Square Error: R Square is the square of the Correlation 

Coefficient which measures the level of variability in dependent 

variable. R squared estimates how much regression line is better 

than a mean line.  
 

2

12

2

1

1
(R )

1
1

(R )

N

j j

j

N

j

j

P
N

R

M
N

=

=

−

= −

−




                                                    (4) 

Where M is mean.  

 

░ 5. RESULT AND DISCUSSION 
The experiments were carried out in a Google Collaboratory 

using an Intel Core i5-11 35G7 windows 10 operating system 

operating at 2.40GHz, having 16 GB main memory and 512 

SSD to evaluate the performance of the proposed ensemble 

technique using python. The performance of ML ensemble 

models, namely Random Forest, Extra trees, Ada Boost and 

Gradient Boosting Machine, are investigated on the original 

data set. Then Ensemble approach based on a grid search 

method is implemented by combining the result of the various 

ML models. To choose the best ML model, it is necessary to 

compare the performance of different ML algorithms. In this 

study, ten different ML algorithms were compared. 
 

5.1 Case (i): Unscaled Ensemble Model 
The size of the inputs and outputs used to train the model is 

crucial. Unscaled input variables, in general, can lead to a 

delayed or unstable learning process, whereas unscaled target 

variables on regression problems can lead to explosive 

gradients and failure of the learning process. Figure 5 shows 

how well different machine learning models are trained for the 

inputs and outputs when they are unscaled. It has been noticed 

that the extra tree model had trained well and generated 92.68% 

prediction accuracy. Random Forest and Gradient Boosting 

machines have also shown significant prediction accuracy 

results with 91% and 90.8% respectively. 

 

Table 2 shows the performance of different algorithm while 

training and testing the data without scaling. 

 

░ Table 2: Performance of algorithms while training and 

testing the data without scaling 

Method 
Training data Testing data 

MAE MSE RMSE R2 MAE MSE RMSE R2 

Linear Regression 0.0175 0.0005 0.022 0.6431 0.0173 0.0005 0.0218 0.6603 

Lasso 0.0312 0.0014 0.0368 0 0.0317 0.0014 0.0374 -0.0017 

Elastic Net 0.0312 0.0014 0.0368 0 0.0317 0.0014 0.0374 -0.0017 

K Neighbors  0.0169 0.0004 0.0212 0.6696 0.0193 0.0006 0.0241 0.776 

Decision Tree 0 0 0.0001 1 0.0144 0.0004 0.0188 0.7464 

Support Vector 0.0312 0.0014 0.0368 -0.0009 0.0318 0.0014 0.0375 -0.005 

Ada Boost 0.015 0.0003 0.0178 0.7652 0.0154 0.0003 0.0183 0.7607 

Gradient Boost 0.0078 0.0001 0.0101 0.924 0.0087 0.0001 0.0113 0.9082 

Random Forest 0.0032 0 0.0043 0.9866 0.0086 0.0001 0.0112 0.9107 

Extra Trees 0 0 0 1 0.0076 0.0001 0.01 0.9284 

https://www.ijeer.forexjournal.co.in/
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Figure 5.  Unscaled Ensemble Algorithm Comparison 

 

5.2 Case(ii): Scaled Ensemble Model 
For each variable, the scale and distribution of data gathered 

from the domain may differ. Differences in scales between input 

variables may make the problem more complex to model. A 

target variable with a wide range of values might lead to 

significant error gradient values, which can cause weight values 

to fluctuate dramatically, making the learning process insecure. 

Scaling, or normalization, significantly impacts the 

performance of different machine learning models by adjusting 

the range of features to ensure equal contribution. For linear 

models like linear and logistic regression, scaling is crucial 

because these models are sensitive to the range of input features, 

and without scaling, features with larger ranges can dominate 

the objective function, leading to suboptimal coefficients and 

poorer performance. In distance-based models such as K-

Nearest Neighbors and Support Vector Machines, scaling is 

essential as these models rely on distance calculations, and 

unscaled features with larger ranges can disproportionately 

affect these calculations, skewing results and reducing 

accuracy. Gradient-based models, including neural networks, 

benefit from scaling as it ensures faster convergence of gradient 

descent algorithms by making sure all features contribute 

proportionately to the gradients, thus improving training 

efficiency and preventing the optimization process from 

becoming inefficient. While tree-based models like decision 

trees and random forests are generally insensitive to feature 

scales, scaling can still be beneficial in ensemble or hybrid 

models involving both tree-based and other types of algorithms. 

Overall, standardizing feature ranges enhances the performance 

and training efficiency of most machine learning models. 
 

 
Figure 6.  Scaled Ensemble Algorithm Comparison 

 

Figure 6 shows how well different machine learning models are 

trained for the inputs and outputs when the dataset is 

standardized. It has been noticed that the extra tree model had 

trained well and generated 92.8% prediction accuracy. We have 

used the data standardization technique for scaling the input 

variable and target variable. Rescaling the distribution of values 

so that the mean of observed values is 0 and the standard 

deviation is 1 is the process of standardizing a dataset. 

Standardization necessitates knowing or being able to 

determine the mean and standard deviation of observable 

quantities with accuracy. From the training data, these values 

are predicted. Table 3 shows the performance of the different 

algorithms when datasets are standardized. 

 

░ Table 3: Algorithms Performance while training and 

testing the data with scaling 

 

  

Method 
Training data Testing data 

MAE MSE RMSE R2 MAE MSE RMSE R2 

Linear Regression 0.0175 0.0005 0.022 0.6431 0.0173 0.0005 0.0218 0.6603 

Lasso 0.0312 0.0014 0.0368 0 0.0317 0.0014 0.0374 -0.0017 

Elastic Net 0.0312 0.0014 0.0368 0 0.0317 0.0014 0.0374 -0.0017 

K Neighbors  0.0085 0.0001 0.0113 0.9063 0.0093 0.0002 0.0127 0.8845 

Decision Tree 0 0 0.0001 1 0.0144 0.0004 0.0188 0.7464 

Support Vector 0.0312 0.0014 0.0368 -0.0009 0.0318 0.0014 0.0375 -0.005 

Ada Boost 0.0141 0.0003 0.0166 0.7956 0.0145 0.0003 0.0172 0.7882 

Gradient Boost 0.005 0 0.0067 0.9672 0.0068 0.0001 0.0092 0.9392 

Random Forest 0.0031 0 0.0041 0.9873 0.0085 0.0001 0.011 0.9135 

Extra Trees 0 0 0 1 0.0076 0.0001 0.0099 0.9295 

https://www.ijeer.forexjournal.co.in/
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5.3 Case(iii): Ensemble Grid Search Model 
Hyperparameter optimization is necessary to get the most out of 

ML models. Hyperparameters are configurable points in a ML 

model that allow them to be tailored to a specific job or dataset. 

Finding a set of hyperparameters that result in the optimal 

model performance on a dataset is frequently necessary. A 

search space is defined as part of an optimization technique, an 

n-dimensional volume, with each hyperparameter representing 

a separate dimension and the scale of the dimension 

representing the possible values for the hyperparameter, such as 

real-valued, integer-valued, or categorical. Here we have used a 

grid search optimization algorithm by defining a search space 

as a grid of hyperparameter values and evaluating every 

position in the grid. Grid search is ideal for spot-checking 

combinations that have previously performed well. Among 

different machine learning modes, it was found that Gradient 

Boosting Machine grid search (GBMGS) had produced a 93.9% 

prediction accuracy result. The performance of various grid 

search machine learning algorithms is recorded as in table 4. 
 

░ Table 4: Performance of Ensemble algorithms while 

training and testing the data with scaling 

 

 

5.4 Comparison of Proposed work with Previous 

work 
In this subsection, the proposed CS-SEM is compared with 

other models developed in previous studies. The proposed study 

and the previous literature work used the same dataset publicly 

available in the UCI machine learning repository. The 

comparison is made in terms of a number of features selected 

for model evaluation and accuracy of the classifiers. The 

proposed method produced the better result than the previous 

other methods. 
 

The comparison of proposed work with the previous work is 

shown in table 5.  
 

░ Table 5: Comparison of previous work with Proposed 

work 
 

Method Features Accuracy 

Strength Pareto evolutionary algorithm [33] 

 

12 91.1% 

Multilayer Perceptron Classifier [35] 

 

12 93.8% 

Random forest [41] 

 

12 88.5% 

Proposed Ensemble Gradient Boosting 

Machine Grid Search 

 

12 93.92% 

 

The table 5 provides a comparison of four different machine 

learning methods based on their accuracy using 12 features 

each. The Strength Pareto Evolutionary Algorithm achieved an  

accuracy of 91.1%, while the Multilayer Perceptron Classifier 

performed slightly better with an accuracy of 93.8%. The  

 

Random Forest method had the lowest accuracy among the four, 

at 88.5%. The highest accuracy, 93.92%, was achieved by the 

Proposed Ensemble Gradient Boosting Machine with Grid 

Search. This indicates that the Proposed Ensemble Gradient 

Boosting Machine with Grid Search outperformed the other 

methods in terms of accuracy for the given task. 

 

░ 6. CONCLUSION 

The DSGC has been demonstrated as a cost-effective technique 

in meeting out the demand. The control approach was 

developed in light of the assumptions, allowing for a better 

understanding of the relationship between the grid's properties 

and its stability. The data utilized in the analysis is the reaction 

of heterogeneous users’ numerous value fluctuations supported 

the grid power balance. ML is used to identify a correlation 

between the input value, the eigenvalue and system stability 

criteria. The focus of future research will be on more 

sophisticated statistics. An ensemble grid search method is 

provided in this paper to make grid stability prediction easier. 

Using the Vadim Arzamasov Electrical Grid Stability dataset, 

we examined the performance of the suggested ensemble 

technique to analyze the model's predictive performance. We 

used a feature selection method and chose eight features based 

on their importance in prediction. The algorithm's performance 

is then independently assessed on unseen test data by 10-fold 

cross-validation on the training data. When compared to all 

other models, the ensemble Gradient Boosting Machine grid 

search algorithm outperforms them all, accurately predicting 

grid stability 93.92% of the time. The proposed ensemble 

gradient boosting machine with grid search method offers a 

novel and robust solution for smart grid stability prediction. By 

Method 
Training data Testing data 

MAE MSE RMSE R2 MAE MSE RMSE R2 

Linear Regression 0.0175 0.0005 0.022 0.6431 0.0173 0.0005 0.0218 0.6603 

Lasso 0.0312 0.0014 0.0368 0 0.0317 0.0014 0.0374 -0.0017 

Elastic Net 0.0312 0.0014 0.0368 0 0.0317 0.0014 0.0374 -0.0017 

K Neighbors  0.0085 0.0001 0.0113 0.9063 0.0093 0.0002 0.0127 0.8845 

Decision Tree 0 0 0.0001 1 0.0144 0.0004 0.0188 0.7464 

Support Vector 0.0312 0.0014 0.0368 -0.0009 0.0318 0.0014 0.0375 -0.005 

Ada Boost 0.0141 0.0003 0.0166 0.7956 0.0145 0.0003 0.0172 0.7882 

Gradient Boost 0.005 0 0.0067 0.9672 0.0068 0.0001 0.0092 0.9392 

Random Forest 0.0031 0 0.0041 0.9873 0.0085 0.0001 0.011 0.9135 

Extra Trees 0 0 0 1 0.0076 0.0001 0.0099 0.9295 
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combining comprehensive hyperparameter tuning with the 

strengths of ensemble learning, it addresses the limitations of 

existing approaches. 
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